IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9492026.html
   My bibliography  Save this article

A Rule-Based Energy Management Strategy Based on Dynamic Programming for Hydraulic Hybrid Vehicles

Author

Listed:
  • Haicheng Zhou
  • Zhaoping Xu
  • Liang Liu
  • Dong Liu
  • Lingling Zhang

Abstract

Energy management strategy is very important for hydraulic hybrid vehicles to improve fuel economy. The rule-based energy management strategies are widely used in engineering practice due to their simplicity and practicality. However, their performances differ a lot from different parameters and control actions. A rule-based energy management strategy is designed in this paper to realize real-time control of a novel hydraulic hybrid vehicle, and a control parameter selection method based on dynamic programming is proposed to optimize its performance. Firstly, the simulation model of the hydraulic hybrid vehicle is built and validated by the data tested from prototype experimental platform. Based on the simulation model, the optimization method of dynamic programming is used to find the global optimal solution of the engine control for the UDDS drive cycle. Then, the engine control parameters of the rule-based energy management strategy are selected according to the engine control trajectory of the global optimal solution. The simulation results show that the 100 km fuel consumption of the proposed rule-based energy management strategy is 12.7L, which is very close to the global optimal value of 12.4L and is suboptimal.

Suggested Citation

  • Haicheng Zhou & Zhaoping Xu & Liang Liu & Dong Liu & Lingling Zhang, 2018. "A Rule-Based Energy Management Strategy Based on Dynamic Programming for Hydraulic Hybrid Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, October.
  • Handle: RePEc:hin:jnlmpe:9492026
    DOI: 10.1155/2018/9492026
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/9492026.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/9492026.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9492026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Yue & Yang, Lin & Du, Mao & Qiang, Jiaxi & Li, Jingzhong & Chen, Yuxuan & Tu, Jiayu, 2023. "Two-scale based energy management for connected plug-in hybrid electric vehicles with global optimal energy consumption and state-of-charge trajectory prediction," Energy, Elsevier, vol. 267(C).
    2. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    3. Shilei Zhou & Paul Walker & Yang Tian & Cong Thanh Nguyen & Nong Zhang, 2021. "Comparison on Energy Economy and Vibration Characteristics of Electric and Hydraulic in-Wheel Drive Vehicles," Energies, MDPI, vol. 14(8), pages 1-15, April.
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Umberto Previti & Sebastian Brusca & Antonio Galvagno & Fabio Famoso, 2022. "Influence of Energy Management System Control Strategies on the Battery State of Health in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 14(19), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9492026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.