IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/496846.html
   My bibliography  Save this article

A Novel Hybrid Function Projective Synchronization between Different Fractional-Order Chaotic Systems

Author

Listed:
  • Ping Zhou
  • Xiao-You Yang

Abstract

An adaptive hybrid function projective synchronization (AHFPS) scheme between different fractional-order chaotic systems with uncertain system parameter is addressed in this paper. In this proposed scheme, the drive and response system could be synchronized up to a vector function factor. This proposed scheme is different with the function projective synchronization (FPS) scheme, in which the drive and response system could be synchronized up to a scaling function factor. The adaptive controller and the parameter update law are gained. Two examples are presented to demonstrate the effectiveness of the proposed scheme.

Suggested Citation

  • Ping Zhou & Xiao-You Yang, 2011. "A Novel Hybrid Function Projective Synchronization between Different Fractional-Order Chaotic Systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, August.
  • Handle: RePEc:hin:jnddns:496846
    DOI: 10.1155/2011/496846
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2011/496846.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2011/496846.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2011/496846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Wang, Xiaomin & Li, Feng & Hu, Xingliu & Wang, Jing, 2023. "Mixed H∞/passive synchronization for persistent dwell-time switched neural networks via an activation function dividing method," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    3. Michal Fečkan & T. Sathiyaraj & JinRong Wang, 2020. "Synchronization of Butterfly Fractional Order Chaotic System," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    4. Aguila-Camacho, Norelys & Duarte-Mermoud, Manuel A. & Delgado-Aguilera, Efredy, 2016. "Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 1-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:496846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.