IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v442y2023ics009630032200786x.html
   My bibliography  Save this article

Mixed H∞/passive synchronization for persistent dwell-time switched neural networks via an activation function dividing method

Author

Listed:
  • Wang, Xiaomin
  • Li, Feng
  • Hu, Xingliu
  • Wang, Jing

Abstract

The mixed H∞/passive synchronization issue of discrete-time switched neural networks is studied in this paper. In order to regulate the switching between subsystems, the persistent dwell-time switching law is adopted. The paper aims to design a suitable synchronization controller to make the synchronization error system satisfy the mixed H∞/passive performance and achieve global uniform exponential stability. By employing Lyapunov stability theory, performance analysis criteria and the synchronization controller design method are given, in which an activation function dividing method is employed to reduce their conservatism. Simulation results demonstrate the superiority and effectiveness of the method.

Suggested Citation

  • Wang, Xiaomin & Li, Feng & Hu, Xingliu & Wang, Jing, 2023. "Mixed H∞/passive synchronization for persistent dwell-time switched neural networks via an activation function dividing method," Applied Mathematics and Computation, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s009630032200786x
    DOI: 10.1016/j.amc.2022.127718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032200786X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Mengping & Xia, Jianwei & Wang, Jing & Meng, Bo & Shen, Hao, 2019. "Asynchronous H∞ filtering for nonlinear persistent dwell-time switched singular systems with measurement quantization," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Hui Gao & Jianwei Xia & Guangming Zhuang & Zhen Wang & Qun Sun, 2017. "Nonfragile Finite-Time Extended Dissipative Control for a Class of Uncertain Switched Neutral Systems," Complexity, Hindawi, vol. 2017, pages 1-22, November.
    3. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    4. Su, Lei & Shen, Hao, 2015. "Mixed H∞/passive synchronization for complex dynamical networks with sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 931-942.
    5. Ping Zhou & Xiao-You Yang, 2011. "A Novel Hybrid Function Projective Synchronization between Different Fractional-Order Chaotic Systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, August.
    6. Li, Feng & Song, Shuai & Zhao, Jianrong & Xu, Shengyuan & Zhang, Zhengqiang, 2019. "Synchronization control for Markov jump neural networks subject to HMM observation and partially known detection probabilities," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Zhen & Wang, Jian, 2020. "Reachable set estimation for Markov jump LPV systems with time delays," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    5. He, Hangfeng & Qi, Wenhai & Kao, Yonggui, 2021. "HMM-based adaptive attack-resilient control for Markov jump system and application to an aircraft model," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    6. Kwon, W. & Jin, Yongsik & Lee, S.M., 2020. "PI-type event-triggered H∞ filter for networked T-S fuzzy systems using affine matched membership function approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    7. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    8. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    9. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    10. Wang, Jing & Hu, Xiaohui & Wei, Yunliang & Wang, Zhen, 2019. "Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 853-864.
    11. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    12. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    13. Guo, Beibei & Xiao, Yu, 2023. "Intermittent synchronization for multi-link and multi-delayed large-scale systems with semi-Markov jump and its application of Chua’s circuits," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    15. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    16. Tan, Guoqiang & Wang, Zhanshan & Li, Cong, 2020. "H∞ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    17. Michal Fečkan & T. Sathiyaraj & JinRong Wang, 2020. "Synchronization of Butterfly Fractional Order Chaotic System," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    18. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    19. Cui, Jiahao & Wang, Ruihua & Jiao, Ticao & Fei, Shumin, 2021. "A foreseeable Lyapunov function approach for H∞ asynchronous filtering of discrete-time switched systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    20. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s009630032200786x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.