IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/107048.html
   My bibliography  Save this article

Optimization of Multiperiod Mixed Train Schedule on High-Speed Railway

Author

Listed:
  • Wenliang Zhou
  • Junli Tian
  • Jin Qin
  • Lianbo Deng
  • TangJian Wei

Abstract

For providing passengers with periodic operation trains and making trains’ time distribution better fit that of passengers, the multiperiod mixed train schedule is first proposed in this paper. It makes each type of train having same origin, destination, route, and stop stations operate based on a periodic basis and allows different types of train to have various operation periods. Then a model of optimizing multiperiod mixed train schedule is built to minimize passengers generalized travel costs with the constraints of trains of same type operating periodically, safe interval requirements of trains’ departure, and arrival times, and so forth. And its heuristic algorithm is designed to optimize the multiperiod mixed train schedule beginning with generating an initial solution by scheduling all types of train type by type and then repeatedly improving their periodic schedules until the objective value cannot be reduced or the iteration number reaches its maximum. Finally, example results illustrate that the proposed model and algorithm can effectively gain a better multiperiod mixed train schedule. However, its passengers deferred times and advanced times are a little higher than these of an aperiodic train schedule.

Suggested Citation

  • Wenliang Zhou & Junli Tian & Jin Qin & Lianbo Deng & TangJian Wei, 2015. "Optimization of Multiperiod Mixed Train Schedule on High-Speed Railway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-14, April.
  • Handle: RePEc:hin:jnddns:107048
    DOI: 10.1155/2015/107048
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/107048.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/107048.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/107048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carey, Malachy & Crawford, Ivan, 2007. "Scheduling trains on a network of busy complex stations," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 159-178, February.
    2. U. Brännlund & P. O. Lindberg & A. Nõu & J.-E. Nilsson, 1998. "Railway Timetabling Using Lagrangian Relaxation," Transportation Science, INFORMS, vol. 32(4), pages 358-369, November.
    3. Li, Feng & Gao, Ziyou & Li, Keping & Yang, Lixing, 2008. "Efficient scheduling of railway traffic based on global information of train," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 1008-1030, December.
    4. J. Medanic & M.J. Dorfman, 2002. "Efficient Scheduling of Traffic on a Railway Line," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 587-602, December.
    5. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    6. Christian Liebchen, 2007. "Periodic Timetable Optimization in Public Transport," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 29-36, Springer.
    7. Li, Xiang & Lo, Hong K., 2014. "Energy minimization in dynamic train scheduling and control for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 269-284.
    8. Burdett, R.L. & Kozan, E., 2006. "Techniques for absolute capacity determination in railways," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 616-632, September.
    9. Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
    10. Ghoseiri, Keivan & Szidarovszky, Ferenc & Asgharpour, Mohammad Jawad, 2004. "A multi-objective train scheduling model and solution," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 927-952, December.
    11. Carey, Malachy, 1994. "A model and strategy for train pathing with choice of lines, platforms, and routes," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 333-353, October.
    12. Dorfman, M. J. & Medanic, J., 2004. "Scheduling trains on a railway network using a discrete event model of railway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 81-98, January.
    13. Odijk, Michiel A., 1996. "A constraint generation algorithm for the construction of periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 455-464, December.
    14. Thomas Lindner & Uwe Zimmermann, 2005. "Cost optimal periodic train scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 281-295, November.
    15. Higgins, A. & Kozan, E. & Ferreira, L., 1996. "Optimal scheduling of trains on a single line track," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 147-161, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming He & Qiuhua Tang & Jatinder N. D. Gupta & Di Yin & Zikai Zhang, 2023. "The shunting scheduling of EMU first-level maintenance in a stub-end depot," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 754-796, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wenliang & Teng, Hualiang, 2016. "Simultaneous passenger train routing and timetabling using an efficient train-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 409-439.
    2. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    3. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    4. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    5. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    6. Matthew E. H. Petering & Mojtaba Heydar & Dietrich R. Bergmann, 2016. "Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming," Transportation Science, INFORMS, vol. 50(3), pages 892-909, August.
    7. Zhou, Wenliang & Tian, Junli & Xue, Lijuan & Jiang, Min & Deng, Lianbo & Qin, Jin, 2017. "Multi-periodic train timetabling using a period-type-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 144-173.
    8. Li, Feng & Sheu, Jiuh-Biing & Gao, Zi-You, 2014. "Deadlock analysis, prevention and train optimal travel mechanism in single-track railway system," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 385-414.
    9. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    10. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    11. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    12. Li, Feng & Gao, Ziyou & Li, Keping & Yang, Lixing, 2008. "Efficient scheduling of railway traffic based on global information of train," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 1008-1030, December.
    13. Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
    14. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    15. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.
    16. Li, Feng & Gao, Ziyou & Wang, David Z.W. & Liu, Ronghui & Tang, Tao & Wu, Jianjun & Yang, Lixing, 2017. "A subjective capacity evaluation model for single-track railway system with δ-balanced traffic and λ-tolerance level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 43-66.
    17. Masoud Yaghini & Mohammadreza Sarmadi & Nariman Nikoo & Mohsen Momeni, 2014. "Capacity Consumption Analysis Using Heuristic Solution Method for Under Construction Railway Routes," Networks and Spatial Economics, Springer, vol. 14(3), pages 317-333, December.
    18. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    19. Talebian, Ahmadreza & Zou, Bo, 2015. "Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the US," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 114-140.
    20. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:107048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.