IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6852548.html
   My bibliography  Save this article

Study of Ion-Acoustic Solitary Waves in a Magnetized Plasma Using the Three-Dimensional Time-Space Fractional Schamel-KdV Equation

Author

Listed:
  • Min Guo
  • Chen Fu
  • Yong Zhang
  • Jianxin Liu
  • Hongwei Yang

Abstract

The study of ion-acoustic solitary waves in a magnetized plasma has long been considered to be an important research subject and plays an increasingly important role in scientific research. Previous studies have focused on the integer-order models of ion-acoustic solitary waves. With the development of theory and advancement of scientific research, fractional calculus has begun to be considered as a method for the study of physical systems. The study of fractional calculus has opened a new window for understanding the features of ion-acoustic solitary waves and can be a potentially valuable approach for investigations of magnetized plasma. In this paper, based on the basic system of equations for ion-acoustic solitary waves and using multi-scale analysis and the perturbation method, we have obtained a new model called the three-dimensional(3D) Schamel-KdV equation. Then, the integer-order 3D Schamel-KdV equation is transformed into the time-space fractional Schamel-KdV (TSF-Schamel-KdV) equation by using the semi-inverse method and the fractional variational principle. To study the properties of ion-acoustic solitary waves, we discuss the conservation laws of the new time-space fractional equation by applying Lie symmetry analysis and the Riemann-Liouville fractional derivative. Furthermore, the multi-soliton solutions of the 3D TSF-Schamel-KdV equation are derived using the Hirota bilinear method. Finally, with the help of the multi-soliton solutions, we explore the characteristics of motion of ion-acoustic solitary waves.

Suggested Citation

  • Min Guo & Chen Fu & Yong Zhang & Jianxin Liu & Hongwei Yang, 2018. "Study of Ion-Acoustic Solitary Waves in a Magnetized Plasma Using the Three-Dimensional Time-Space Fractional Schamel-KdV Equation," Complexity, Hindawi, vol. 2018, pages 1-17, June.
  • Handle: RePEc:hin:complx:6852548
    DOI: 10.1155/2018/6852548
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/6852548.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/6852548.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/6852548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongwei Yang & Baoshu Yin & Yunlong Shi & Qingbiao Wang, 2012. "Forced ILW-Burgers Equation as a Model for Rossby Solitary Waves Generated by Topography in Finite Depth Fluids," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-17, October.
    2. McAnally, Morgan & Ma, Wen-Xiu, 2018. "An integrable generalization of the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 220-227.
    3. Liu, Yinping & Li, Zhibin, 2009. "The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 1-8.
    4. Lu, Changna & Fu, Chen & Yang, Hongwei, 2018. "Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Fu & Yaodeng Chen & Hongwei Yang, 2019. "Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    2. Haoyu Dong & Changna Lu & Hongwei Yang, 2018. "The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations," Mathematics, MDPI, vol. 6(10), pages 1-17, October.
    3. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    4. Zhang, Ruigang & Yang, Liangui & Liu, Quansheng & Yin, Xiaojun, 2019. "Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 666-679.
    5. Cao, Weiping & Fei, Jinxi & Li, Jiying, 2021. "Symmetry breaking solutions to nonlocal Alice-Bob Kadomtsev-Petviashivili system," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Qianqian Yang & Qiulan Zhao & Xinyue Li, 2019. "Explicit Solutions and Conservation Laws for a New Integrable Lattice Hierarchy," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    7. Shi, Yu-Ren & Yang, Xue-Ying & Tang, Na & Wang, Deng-Shan, 2018. "Effects of Zeeman field on the dynamical instability of flat states for spin-2 Bose–Einstein condensates in an optical lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 39-55.
    8. Hayat, T. & Abbas, Z. & Javed, T. & Sajid, M., 2009. "Three-dimensional rotating flow induced by a shrinking sheet for suction," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1615-1626.
    9. Tongshuai Liu & Huanhe Dong, 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    10. Rezapour, Sh. & Kumar, S. & Iqbal, M.Q. & Hussain, A. & Etemad, S., 2022. "On two abstract Caputo multi-term sequential fractional boundary value problems under the integral conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 365-382.
    11. Mouktonglang, Thanasak & Yimnet, Suriyon & Sukantamala, Nattakorn & Wongsaijai, Ben, 2022. "Dynamical behaviors of the solution to a periodic initial–boundary value problem of the generalized Rosenau-RLW-Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 114-136.
    12. Yin, Xiao-Jun & Yang, Lian-Gui & Liu, Quan-Sheng & Su, Jin-Mei & Wu, Guo-rong, 2018. "Structure of equatorial envelope Rossby solitary waves with complete Coriolis force and the external source," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 68-74.
    13. Rizvi, Syed Tahir Raza & Khan, Salah Ud-Din & Hassan, Mohsan & Fatima, Ishrat & Khan, Shahab Ud-Din, 2021. "Stable propagation of optical solitons for nonlinear Schrödinger equation with dispersion and self phase modulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 126-136.
    14. Shuman Meng & Yujun Cui, 2019. "The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition," Mathematics, MDPI, vol. 7(2), pages 1-9, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6852548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.