IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5039097.html
   My bibliography  Save this article

Prediction of Ammunition Storage Reliability Based on Improved Ant Colony Algorithm and BP Neural Network

Author

Listed:
  • Fang Liu
  • Hua Gong
  • Ligang Cai
  • Ke Xu

Abstract

Storage reliability is an important index of ammunition product quality. It is the core guarantee for the safe use of ammunition and the completion of tasks. In this paper, we develop a prediction model of ammunition storage reliability in the natural storage state where the main affecting factors of ammunition reliability include temperature, humidity, and storage period. A new improved algorithm based on three-stage ant colony optimization (IACO) and BP neural network algorithm is proposed to predict ammunition failure numbers. The reliability of ammunition storage is obtained indirectly by failure numbers. The improved three-stage pheromone updating strategies solve two problems of ant colony algorithm: local minimum and slow convergence. Aiming at the incompleteness of field data, “zero failure” data pretreatment, “inverted hanging” data pretreatment, normalization of data, and small sample data augmentation are carried out. A homogenization sampling method is proposed to extract training and testing samples. Experimental results show that IACO-BP algorithm has better accuracy and stability in ammunition storage reliability prediction than BP network, PSO-BP, and ACO-BP algorithm.

Suggested Citation

  • Fang Liu & Hua Gong & Ligang Cai & Ke Xu, 2019. "Prediction of Ammunition Storage Reliability Based on Improved Ant Colony Algorithm and BP Neural Network," Complexity, Hindawi, vol. 2019, pages 1-13, March.
  • Handle: RePEc:hin:complx:5039097
    DOI: 10.1155/2019/5039097
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/5039097.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/5039097.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5039097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yongjin & Zhao, Ming & Zhang, Shitao & Wang, Jiamei & Zhang, Yanjun, 2017. "An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 24-36.
    2. Fei-Peng Wang, 2018. "Research on Application of Big Data in Internet Financial Credit Investigation Based on Improved GA-BP Neural Network," Complexity, Hindawi, vol. 2018, pages 1-16, December.
    3. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    4. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    2. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    3. Cheng, Yao & Elsayed, Elsayed A., 2018. "Reliability modeling and optimization of operational use of one-shot units," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 27-36.
    4. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    5. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Min Lin, 2022. "Innovative Risk Early Warning Model under Data Mining Approach in Risk Assessment of Internet Credit Finance," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1443-1464, April.
    7. Zhang, Yongjin & Zhao, Ming & Zhang, Shitao & Wang, Jiamei & Zhang, Yanjun, 2017. "An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 24-36.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5039097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.