IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i3p374-d92140.html
   My bibliography  Save this article

Forest Fragmentation and Driving Forces in Yingkou, Northeastern China

Author

Listed:
  • Lei Zhang

    (School of Resource and Environment Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Yanfang Liu

    (School of Resource and Environment Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Collaborative Innovation Center of Geospatial Information Technology, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Xiaojian Wei

    (Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, National Administration of Surveying, Mapping and Geoinformation, Nanchang 330013, China
    School of Geomatics, East China University of Technology, 418 Guanglan Road, Nanchang 330013, China)

Abstract

Forest fragmentation, the process of changing original large and intact forest patches into smaller and isolated areas, significantly influences the balance of surface physical environment, biodiversity, and species richness. Sufficient knowledge of forest fragmentation is necessary to maintain ecological balance and promote sustainable resource utilization. This study combines remote sensing, geographical information systems, and landscape metrics to assess forest fragmentation at landscape and pixel levels during different time periods (2000–2005, 2005–2010, and 2010–2015) in the Yingkou region. Spatial statistical analysis is also used to analyze the relationship between forest landscape fragmentation and its determinants (e.g., natural factors, socioeconomic factors, and proximity factors). Results show that forest patches became smaller, subdivided, and isolated during 2010–2015 at the total landscape level. Local changes occurred in the southwest of the study region or around the development area. Our data also indicate that shrinkage and subdivision were the main forest fragmentation processes during three times, and attrition became the main forest fragmentation process from 2010 to 2015. These changes were significantly influenced by natural factors (e.g., elevation and slope), proximity factors (e.g., distance to city and distance to province roads), and socioeconomic factors (e.g., gross domestic product). Results presented in this study provide valuable insights into the pattern and processes of forest fragmentation and present direct implications for the protection and reasonable utilization of forest resources.

Suggested Citation

  • Lei Zhang & Yanfang Liu & Xiaojian Wei, 2017. "Forest Fragmentation and Driving Forces in Yingkou, Northeastern China," Sustainability, MDPI, vol. 9(3), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:374-:d:92140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/3/374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/3/374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Jin & Ying Wang & Hong Jiang & Min Cheng, 2016. "Recent NDVI-Based Variation in Growth of Boreal Intact Forest Landscapes and Its Correlation with Climatic Variables," Sustainability, MDPI, vol. 8(4), pages 1-10, April.
    2. Echeverria, Cristian & Coomes, David A. & Hall, Myrna & Newton, Adrian C., 2008. "Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile," Ecological Modelling, Elsevier, vol. 212(3), pages 439-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Gui Jin & Qing Wan & Yanfang Liu & Xiaojian Wei, 2018. "Measurement of Ecological Land Use/Cover Change and Its Varying Spatiotemporal Driving Forces by Statistical and Survival Analysis: A Case Study of Yingkou City, China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    2. Pablo Cuenca & Juan Robalino & Rodrigo Arriagada & Cristian Echeverría, 2018. "Are government incentives effective for avoided deforestation in the tropical Andean forest?," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-14, September.
    3. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    4. Siqi Sun & Yihe Lü & Da Lü & Cong Wang, 2021. "Quantifying the Variability of Forest Ecosystem Vulnerability in the Largest Water Tower Region Globally," IJERPH, MDPI, vol. 18(14), pages 1-18, July.
    5. Newman, Minke E. & McLaren, Kurt P. & Wilson, Byron S., 2018. "Using the forest-transition model and a proximate cause of deforestation to explain long-term forest cover trends in a Caribbean forest," Land Use Policy, Elsevier, vol. 71(C), pages 395-408.
    6. Von Thaden, Juan José & Laborde, Javier & Guevara, Sergio & Venegas-Barrera, Crystian S., 2018. "Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: The contribution of the 1998 protected natural area decree," Land Use Policy, Elsevier, vol. 72(C), pages 443-450.
    7. Pablo Cuenca & Cristian Echeverria, 2017. "How do protected landscapes associated with high biodiversity and population levels change?," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.
    8. César J. Pérez & Carl A. Smith, 2019. "Indigenous Knowledge Systems and Conservation of Settled Territories in the Bolivian Amazon," Sustainability, MDPI, vol. 11(21), pages 1-41, November.
    9. CholHyok Kang & Yili Zhang & Zhaofeng Wang & Linshan Liu & Huamin Zhang & Yilgwang Jo, 2017. "The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    10. Marín, Sandra L. & Nahuelhual, Laura & Echeverría, Cristian & Grant, William E., 2011. "Projecting landscape changes in southern Chile: Simulation of human and natural processes driving land transformation," Ecological Modelling, Elsevier, vol. 222(15), pages 2841-2855.
    11. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi, 2019. "Multi-Scale Assessment of Relationships between Fragmentation of Riparian Forests and Biological Conditions in Streams," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    12. Zhifang Pei & Shibo Fang & Wunian Yang & Lei Wang & Mingyan Wu & Qifei Zhang & Wei Han & Dao Nguyen Khoi, 2019. "The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015)," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    13. Martín Piazzon & Asier R Larrinaga & Luis Santamaría, 2011. "Are Nested Networks More Robust to Disturbance? A Test Using Epiphyte-Tree, Comensalistic Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    14. César Benavidez-Silva & Magdalena Jensen & Patricio Pliscoff, 2021. "Future Scenarios for Land Use in Chile: Identifying Drivers of Change and Impacts over Protected Area System," Land, MDPI, vol. 10(4), pages 1-21, April.
    15. Wang, Qian & Malanson, George P., 2008. "Spatial hyperdynamism in a post-disturbance simulated forest," Ecological Modelling, Elsevier, vol. 215(4), pages 337-344.
    16. Juan Von Thaden & Gilberto Binnqüist-Cervantes & Octavio Pérez-Maqueo & Debora Lithgow, 2022. "Half-Century of Forest Change in a Neotropical Peri-Urban Landscape: Drivers and Trends," Land, MDPI, vol. 11(4), pages 1-14, April.
    17. Wu, Daqian & Liu, Jian & Zhang, Gaosheng & Ding, Wenjuan & Wang, Wei & Wang, Renqing, 2009. "Incorporating spatial autocorrelation into cellular automata model: An application to the dynamics of Chinese tamarisk (Tamarix chinensis Lour.)," Ecological Modelling, Elsevier, vol. 220(24), pages 3490-3498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:374-:d:92140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.