IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2016i1p10-d86014.html
   My bibliography  Save this article

Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome

Author

Listed:
  • Giulia Capotorti

    (Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy)

  • Eva Del Vico

    (Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy)

  • Ilaria Anzellotti

    (Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy)

  • Laura Celesti-Grapow

    (Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy)

Abstract

A large number of green infrastructure (GI) projects have recently been proposed, planned and implemented in European cities following the adoption of the GI strategy by the EU Commission in 2013. Although this policy tool is closely related to biodiversity conservation targets, some doubts have arisen as regards the ability of current urban GI to provide beneficial effects not only for human societies but also for the ecological systems that host them. The aim of this work is to review the features that should be considered critical when searching for solutions that simultaneously support biodiversity and guarantee the provision of ecosystem services (ES) in urban areas. Starting from a case study in the metropolitan area of Rome, we highlight the role of urban trees and forests as proxies for overall biodiversity and as main ecosystem service providers. We look beyond the individual functional features of plant species and vegetation communities to promote the biogeographic representativity, ecological coherence and landscape connectivity of new or restored GI elements.

Suggested Citation

  • Giulia Capotorti & Eva Del Vico & Ilaria Anzellotti & Laura Celesti-Grapow, 2016. "Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2016:i:1:p:10-:d:86014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Langemeyer, Johannes & Gómez-Baggethun, Erik & Haase, Dagmar & Scheuer, Sebastian & Elmqvist, Thomas, 2016. "Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA)," Environmental Science & Policy, Elsevier, vol. 62(C), pages 45-56.
    2. Hansen, Rieke & Frantzeskaki, Niki & McPhearson, Timon & Rall, Emily & Kabisch, Nadja & Kaczorowska, Anna & Kain, Jaan-Henrik & Artmann, Martina & Pauleit, Stephan, 2015. "The uptake of the ecosystem services concept in planning discourses of European and American cities," Ecosystem Services, Elsevier, vol. 12(C), pages 228-246.
    3. Daniel L. Childers & Mary L. Cadenasso & J. Morgan Grove & Victoria Marshall & Brian McGrath & Steward T. A. Pickett, 2015. "An Ecology for Cities: A Transformational Nexus of Design and Ecology to Advance Climate Change Resilience and Urban Sustainability," Sustainability, MDPI, vol. 7(4), pages 1-18, March.
    4. Connop, Stuart & Vandergert, Paula & Eisenberg, Bernd & Collier, Marcus J. & Nash, Caroline & Clough, Jack & Newport, Darryl, 2016. "Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure," Environmental Science & Policy, Elsevier, vol. 62(C), pages 99-111.
    5. Richardson, Leslie & Loomis, John & Kroeger, Timm & Casey, Frank, 2015. "The role of benefit transfer in ecosystem service valuation," Ecological Economics, Elsevier, vol. 115(C), pages 51-58.
    6. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    7. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    8. Giulia Capotorti & Barbara Mollo & Laura Zavattero & Ilaria Anzellotti & Laura Celesti-Grapow, 2015. "Setting Priorities for Urban Forest Planning. A Comprehensive Response to Ecological and Social Needs for the Metropolitan Area of Rome (Italy)," Sustainability, MDPI, vol. 7(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Wysmułek & Maria Hełdak & Anatolii Kucher, 2020. "The Analysis of Green Areas’ Accessibility in Comparison with Statistical Data in Poland," IJERPH, MDPI, vol. 17(12), pages 1-17, June.
    2. Mónica Andrade & Cláudia Fernandes & António Coutinho & Albano Figueiredo, 2023. "Urban Green Infrastructure: Does Species’ Origin Impair Ecosystem Services Provision?," Land, MDPI, vol. 13(1), pages 1-21, December.
    3. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    2. Brzoska, P. & Grunewald, K. & Bastian, O., 2021. "A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts," Ecosystem Services, Elsevier, vol. 49(C).
    3. Kieslich, Marcus & Salles, Jean-Michel, 2021. "Implementation context and science-policy interfaces: Implications for the economic valuation of ecosystem services," Ecological Economics, Elsevier, vol. 179(C).
    4. Johnson, Daniel & Geisendorf, Sylvie, 2019. "Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses," Ecological Economics, Elsevier, vol. 158(C), pages 194-205.
    5. Schetke, Sophie & Lee, Heera & Graf, Wanda & Lautenbach, Sven, 2018. "Application of the ecosystem service concept for climate protection in Germany," Ecosystem Services, Elsevier, vol. 29(PB), pages 294-305.
    6. Linrun Qiu & Yuxiang Dong & Hai Liu, 2022. "Integrating Ecosystem Services into Planning Practice: Situation, Challenges and Inspirations," Land, MDPI, vol. 11(4), pages 1-21, April.
    7. Rémi Jaligot & Jérôme Chenal, 2019. "Integration of Ecosystem Services in Regional Spatial Plans in Western Switzerland," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    8. Renata Giedych & Gabriela Maksymiuk, 2017. "Specific Features of Parks and Their Impact on Regulation and Cultural Ecosystem Services Provision in Warsaw, Poland," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    9. Francesca Vignoli & Claudia de Luca & Simona Tondelli, 2021. "A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    10. Lam, Sharon T. & Conway, Tenley M., 2018. "Ecosystem services in urban land use planning policies: A case study of Ontario municipalities," Land Use Policy, Elsevier, vol. 77(C), pages 641-651.
    11. Cortinovis, Chiara & Geneletti, Davide, 2019. "A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    12. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    13. Massoni, Emma Soy & Barton, David N. & Rusch, Graciela M. & Gundersen, Vegard, 2018. "Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces," Ecosystem Services, Elsevier, vol. 31(PC), pages 502-516.
    14. Dennis, Matthew & James, Philip, 2017. "Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level," Ecosystem Services, Elsevier, vol. 26(PA), pages 17-26.
    15. Donatella Valente & María Victoria Marinelli & Erica Maria Lovello & Cosimo Gaspare Giannuzzi & Irene Petrosillo, 2022. "Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces," Land, MDPI, vol. 11(3), pages 1-13, March.
    16. Vahid Amini Parsa & Esmail Salehi & Ahmad Reza Yavari & Peter M van Bodegom, 2019. "An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    17. Brown, Melanie G. & Quinn, John E., 2018. "Zoning does not improve the availability of ecosystem services in urban watersheds. A case study from Upstate South Carolina, USA," Ecosystem Services, Elsevier, vol. 34(PB), pages 254-265.
    18. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    19. Peck, Megan & Khirfan, Luna, 2021. "Improving the validity and credibility of the sociocultural valuation of ecosystem services in Amman, Jordan," Ecological Economics, Elsevier, vol. 189(C).
    20. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2016:i:1:p:10-:d:86014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.