IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v2y2010i5p1408-1430d8390.html
   My bibliography  Save this article

Consumption and Use of Non-Renewable Mineral and Energy Raw Materials from an Economic Geology Point of View

Author

Listed:
  • Volker Steinbach

    (Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany)

  • Friedrich-W. Wellmer

    (Neue Sachlichkeit 32, D-30655 Hannover, Germany)

Abstract

We outline a path to sustainable development that would give future generations the chance to be as well-off as their predecessors without running out of natural resources, especially metals. To this end, we have to consider three key resources: (1) the geosphere or primary resources, (2) the technosphere or secondary resources, which can be recycled and (3) human ingenuity and creativity. We have two resource extremes: natural resources which are completely consumed (fossil fuels) versus natural resources (metals) which are wholly recyclable and can be used again. Metals survive use and are merely transferred from the geosphere to the technosphere. There will, however, always be a need for contributions from the geosphere to offset inevitable metal losses in the technosphere. But we do have a choice. We do not need raw materials as such, only the intrinsic property of a material that enables it to fulfil a function. At the time when consumption starts to level off, chances improve of obtaining most of the material for our industrial requirements from the technosphere. Then a favorable supply equilibrium can emerge. Essential conditions for taking advantage of this opportunity: affordable energy and ingenuity to find new solutions for functions, to optimize processes and to minimize losses in the technosphere.

Suggested Citation

  • Volker Steinbach & Friedrich-W. Wellmer, 2010. "Consumption and Use of Non-Renewable Mineral and Energy Raw Materials from an Economic Geology Point of View," Sustainability, MDPI, vol. 2(5), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:2:y:2010:i:5:p:1408-1430:d:8390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/2/5/1408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/2/5/1408/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Courage Mlambo, 2022. "Non-Renewable Resources and Sustainable Resource Extraction: An Empirical Test of the Hotelling Rule’s Significance to Gold Extraction in South Africa," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    2. Afflerbach, Patrick & Fridgen, Gilbert & Keller, Robert & Rathgeber, Andreas W. & Strobel, Florian, 2014. "The by-product effect on metal markets – New insights to the price behavior of minor metals," Resources Policy, Elsevier, vol. 42(C), pages 35-44.
    3. Scholz, Roland W. & Wellmer, Friedrich-Wilhelm, 2015. "Losses and use efficiencies along the phosphorus cycle. Part 1: Dilemmata and losses in the mines and other nodes of the supply chain," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 216-234.
    4. Stuermer, Martin & Schwerhoff, Gregor, 2013. "Technological change in resource extraction and endogenous growth," Bonn Econ Discussion Papers 12/2013, University of Bonn, Bonn Graduate School of Economics (BGSE).
    5. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    6. Leidy Rendón-Castrillón & Margarita Ramírez-Carmona & Carlos Ocampo-López & Luis Gómez-Arroyave, 2023. "Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    7. Choi, Chul Hun & Kim, Sang-Phil & Lee, Seokcheon & Zhao, Fu, 2020. "Game theoretic production decisions of by-product materials critical for clean energy technologies - Indium as a case study," Energy, Elsevier, vol. 203(C).
    8. Frenzel, Max & Tolosana-Delgado, Raimon & Gutzmer, Jens, 2015. "Assessing the supply potential of high-tech metals – A general method," Resources Policy, Elsevier, vol. 46(P2), pages 45-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:2:y:2010:i:5:p:1408-1430:d:8390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.