IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3411-d1632778.html
   My bibliography  Save this article

Clean Energy Self-Consistent Systems for Automated Guided Vehicle (AGV) Logistics Scheduling in Automated Ports

Author

Listed:
  • Jie Wang

    (School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China)

  • Yuqiang Li

    (School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China)

  • Zhiqiang Liu

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China)

  • Minmin Yuan

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China)

Abstract

To enhance the logistics scheduling efficiency of automated guided vehicles (AGVs) in automated ports and achieve the orderly charging and battery swapping of AGVs as well as self-sufficient clean energy, this paper proposes an integrated optimization method. The method first utilizes graph theory to construct a theoretical model that includes AGVs, the port road network, and charging and battery-swapping stations, in order to analyze the optimal logistics scheduling and charging and swapping strategies. Subsequently, for the multi-objective optimization problems in AGV logistics scheduling and charging and swapping, a fast solution method based on the immune optimization algorithm is proposed, with scheduling time and the self-sufficiency rate of clean energy for port AGVs as the constraint conditions. Finally, the effectiveness of the proposed model and algorithm is verified through a simulation scenario. The results show that in the simulated port logistics scenario, after optimization, the total operation time of AGVs is significantly reduced. Compared with the cases that only consider scheduling time, the charging strategy, or wind and solar output, the average clean energy self-sufficiency rate under the proposed strategy increased by 82.7%, 27.5%, and 53.9%, respectively. In addition, as the weight of the self-sufficiency rate increases, both the total driving time and the total clean energy self-sufficiency rate of AGVs show an upward trend and are approximately linearly related. Within the specified maximum scheduling time, the actual scheduling time and self-sufficiency rate can be flexibly coordinated, with significant carbon reduction benefits.

Suggested Citation

  • Jie Wang & Yuqiang Li & Zhiqiang Liu & Minmin Yuan, 2025. "Clean Energy Self-Consistent Systems for Automated Guided Vehicle (AGV) Logistics Scheduling in Automated Ports," Sustainability, MDPI, vol. 17(8), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3411-:d:1632778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minghai Yuan & Liang Zheng & Hanyu Huang & Kaiwen Zhou & Fengque Pei & Wenbin Gu, 2025. "Research on flexible job shop scheduling problem with AGV using double DQN," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 509-535, January.
    2. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    3. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zakarya Soufi & Slaheddine Mestiri & Pierre David & Zakaria Yahouni & Johannes Fottner, 2025. "A material handling system modeling framework: a data-driven approach for the generation of discrete-event simulation models," Flexible Services and Manufacturing Journal, Springer, vol. 37(1), pages 67-96, March.
    2. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    3. Bock, Stefan & Bomsdorf, Stefan & Boysen, Nils & Schneider, Michael, 2025. "A survey on the Traveling Salesman Problem and its variants in a warehousing context," European Journal of Operational Research, Elsevier, vol. 322(1), pages 1-14.
    4. Tadumadze, Giorgi & Wenzel, Julia & Emde, Simon & Weidinger, Felix & Elbert, Ralf, 2023. "Assigning orders and pods to picking stations in a multi-level robotic mobile fulfillment system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136885, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Ranaboldo, M. & Aragüés-Peñalba, M. & Arica, E. & Bade, A. & Bullich-Massagué, E. & Burgio, A. & Caccamo, C. & Caprara, A. & Cimmino, D. & Domenech, B. & Donoso, I. & Fragapane, G. & González-Font-de-, 2024. "A comprehensive overview of industrial demand response status in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Cui, Yibing & Hu, Wei & Rahmani, Ahmed, 2023. "Fractional-order artificial bee colony algorithm with application in robot path planning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 47-64.
    7. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    8. Anastasios Gialos & Vasileios Zeimpekis, 2024. "A state-of-the-art classification and review of parameters that affect the design, control, and operating strategies of order-picking systems," Operational Research, Springer, vol. 24(1), pages 1-52, March.
    9. Hu, Yue & Yang, Hongbing & Huang, Yi, 2022. "Conflict-free scheduling of large-scale multi-load AGVs in material transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    11. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    12. Yue Chen & Yisong Li, 2024. "Storage Location Assignment for Improving Human–Robot Collaborative Order-Picking Efficiency in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 16(5), pages 1-25, February.
    13. Agnieszka A. Tubis & Honorata Poturaj, 2022. "Risk Related to AGV Systems—Open-Access Literature Review," Energies, MDPI, vol. 15(23), pages 1-23, November.
    14. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    15. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.
    16. Lihle N. Tikwayo & Tebello N. D. Mathaba, 2023. "Applications of Industry 4.0 Technologies in Warehouse Management: A Systematic Literature Review," Logistics, MDPI, vol. 7(2), pages 1-19, April.
    17. Pfrommer, Jakob & Meyer, Anne & Tierney, Kevin, 2024. "Solving the unit-load pre-marshalling problem in block stacking storage systems with multiple access directions," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1054-1071.
    18. Romualdas Bausys & Edmundas Kazimieras Zavadskas & Rokas Semenas, 2021. "Path Selection for the Inspection Robot by m-Generalized q-Neutrosophic PROMETHEE Approach," Energies, MDPI, vol. 15(1), pages 1-12, December.
    19. Boysen, Nils & de Koster, René, 2025. "50 years of warehousing research—An operations research perspective," European Journal of Operational Research, Elsevier, vol. 320(3), pages 449-464.
    20. Mona Haji & Frank Himpel, 2024. "Building Resilience in Food Security: Sustainable Strategies Post-COVID-19," Sustainability, MDPI, vol. 16(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3411-:d:1632778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.