IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6767-d1709693.html
   My bibliography  Save this article

A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators

Author

Listed:
  • Lei Su

    (State Grid Hubei Electric Power Research Institute, Wuhan 430000, China
    Hubei Key Laboratory of Regional New Power Systems and Rural Energy System Configuration, Wuhan 430000, China
    Hubei Engineering Research Center of the Construction and Operation Control Technology of New Power Systems, Wuhan 430000, China)

  • Wanli Feng

    (State Grid Hubei Electric Power Research Institute, Wuhan 430000, China
    Hubei Key Laboratory of Regional New Power Systems and Rural Energy System Configuration, Wuhan 430000, China
    Hubei Engineering Research Center of the Construction and Operation Control Technology of New Power Systems, Wuhan 430000, China)

  • Cao Kan

    (State Grid Hubei Electric Power Research Institute, Wuhan 430000, China
    Hubei Key Laboratory of Regional New Power Systems and Rural Energy System Configuration, Wuhan 430000, China
    Hubei Engineering Research Center of the Construction and Operation Control Technology of New Power Systems, Wuhan 430000, China)

  • Mingjiang Wei

    (State Grid Hubei Electric Power Research Institute, Wuhan 430000, China
    Hubei Key Laboratory of Regional New Power Systems and Rural Energy System Configuration, Wuhan 430000, China
    Hubei Engineering Research Center of the Construction and Operation Control Technology of New Power Systems, Wuhan 430000, China)

  • Rui Su

    (School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China)

  • Pan Yu

    (School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China)

  • Ning Zhang

    (School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China)

Abstract

To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for distributed resource aggregators. A phased multi-contract collaborative scheduling model oriented toward sustainable development is proposed. Through intelligent algorithms, the model dynamically optimises decisions across the day-ahead and intraday phases: During the day-ahead scheduling phase, intelligent algorithms predict load demand and energy output, and combine with elastic performance-based response contracts to construct a user-side electricity consumption behaviour intelligent control model. Under the premise of ensuring user comfort, the model generates a 24 h scheduling plan with the objectives of minimising operational costs and efficiently integrating renewable energy. In the intraday scheduling phase, a rolling optimisation mechanism is used to activate energy storage capacity contracts and dynamic frequency stability contracts in real time based on day-ahead prediction deviations. This efficiently coordinates the intelligent frequency regulation strategies of energy storage devices and electric vehicle aggregators to quickly mitigate power fluctuations and achieve coordinated control of primary and secondary frequency regulation. Case study results indicate that the intelligent optimisation-driven multi-contract scheduling model significantly improves system operational efficiency and stability, reduces system operational costs by 30.49%, and decreases power purchase fluctuations by 12.41%, providing a feasible path for constructing a low-carbon, resilient grid under high renewable energy penetration.

Suggested Citation

  • Lei Su & Wanli Feng & Cao Kan & Mingjiang Wei & Rui Su & Pan Yu & Ning Zhang, 2025. "A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators," Sustainability, MDPI, vol. 17(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6767-:d:1709693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mei, Jie & Chen, Chen & Wang, Jianhui & Kirtley, James L., 2019. "Coalitional game theory based local power exchange algorithm for networked microgrids," Applied Energy, Elsevier, vol. 239(C), pages 133-141.
    2. Fan, Shuai & Liu, Jiang & Wu, Qing & Cui, Mingjian & Zhou, Huan & He, Guangyu, 2020. "Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    2. Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.
    3. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    4. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    5. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    6. Mohammad Sadeghi & Shahram Mollahasani & Melike Erol-Kantarci, 2021. "Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    9. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    10. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    11. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    12. Jun Dong & A-Ru-Han Bao & Yao Liu & Xi-Hao Dou & Dong-Ran Liu & Gui-Yuan Xue, 2022. "Dynamic Differential Game Strategy of the Energy Big Data Ecosystem Considering Technological Innovation," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    13. Thiti Jittayasotorn & Muthiah Sadidah & Takahiro Yoshida & Takuro Kobashi, 2023. "On the Adoption of Rooftop Photovoltaics Integrated with Electric Vehicles toward Sustainable Bangkok City, Thailand," Energies, MDPI, vol. 16(7), pages 1-17, March.
    14. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    15. Xiong, Chang & Su, Yixin & Wang, Hao & Dong, Zhengcheng & Tian, Meng & Shi, Binghua, 2024. "Consensus-based decentralized scheduling method for collaborative operation in seaport virtual power plant," Applied Energy, Elsevier, vol. 373(C).
    16. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    17. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    18. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    19. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    20. Kamran Taghizad-Tavana & As’ad Alizadeh & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan, 2023. "A Comprehensive Review of Electric Vehicles in Energy Systems: Integration with Renewable Energy Sources, Charging Levels, Different Types, and Standards," Energies, MDPI, vol. 16(2), pages 1-23, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6767-:d:1709693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.