Evolutionary Characteristics of Sulphate Ions in Condensable Particulate Matter Following Ultra-Low Emissions from Coal-Fired Power Plants During Low Winter Temperatures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
- Mingyi Wang & Weimeng Kong & Ruby Marten & Xu-Cheng He & Dexian Chen & Joschka Pfeifer & Arto Heitto & Jenni Kontkanen & Lubna Dada & Andreas Kürten & Taina Yli-Juuti & Hanna E. Manninen & Stavros Ama, 2020. "Rapid growth of new atmospheric particles by nitric acid and ammonia condensation," Nature, Nature, vol. 581(7807), pages 184-189, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ke Yin & Shixin Mai & Jun Zhao, 2022. "Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment," IJERPH, MDPI, vol. 19(11), pages 1-15, June.
- Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.
- Yongchun Liu & Junlei Zhan & Feixue Zheng & Boying Song & Yusheng Zhang & Wei Ma & Chenjie Hua & Jiali Xie & Xiaolei Bao & Chao Yan & Federico Bianchi & Tuukka Petäjä & Aijun Ding & Yu Song & Hong He , 2022. "Dust emission reduction enhanced gas-to-particle conversion of ammonia in the North China Plain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Miliauskas, Gintautas & Puida, Egidijus & Poškas, Robertas & Ragaišis, Valdas & Paukštaitis, Linas & Jouhara, Hussam & Mingilaitė, Laura, 2022. "Experimental investigations of water droplet transient phase changes in flue gas flow in the range of temperatures characteristic of condensing economizer technologies," Energy, Elsevier, vol. 256(C).
- Pei, Ting & Ma, Suxia & Zhao, Guanjia & Song, Guanqiang & Wang, Peng & Mi, Chenfeng, 2023. "Improving the removal of SO3 aerosol by combining flue gas condensation and alkali spray," Energy, Elsevier, vol. 272(C).
- Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).
- Wang, Haichao & Wu, Xiaozhou & Liu, Zheyi & Granlund, Katja & Lahdelma, Risto & Li, Ji & Teppo, Esa & Yu, Li & Duamu, Lin & Li, Xiangli & Haavisto, Ilkka, 2021. "Waste heat recovery mechanism for coal-fired flue gas in a counter-flow direct contact scrubber," Energy, Elsevier, vol. 237(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6342-:d:1698976. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.