IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6067-d1693245.html
   My bibliography  Save this article

The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model

Author

Listed:
  • Hu Chen

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Yi Sun

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Diwei Tang

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Jian Song

    (The Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China)

  • Yi Tu

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Qi Zhang

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

Abstract

The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon cycle. With the steady progress of social and economic development and urbanization, the supply capacity of ecosystem services has sharply decreased, and the carbon cycle mechanism has changed, further reducing the sustainability of regional ecosystem services. In this study, carbon storage in the middle reaches of the Yangtze River was estimated from 2000 to 2020 based on the InVEST model, and the temporal and spatial evolution characteristics of carbon storage in the middle reaches of the Yangtze River were summarized using the coefficient of variation and spatial autocorrelation. The coupled InVEST-PLUS model was used to simulate the carbon storage characteristics of the middle reaches of the Yangtze River under natural development, ecological protection, cultivated land protection, and urban development scenarios in 2035. The results show the following: (1) The main land-use types in the middle reaches of the Yangtze River are cultivated and forest land, and the land-use types in the study area show the characteristics of “two increases and four decreases” in the past 20 years. (2) The carbon storage level in the middle reaches of the Yangtze River has decreased by 83.65 × 10 6 t in the past 20 years (approximately 1.16%). The coefficient of variation showed that the carbon storage level in the middle reaches of the Yangtze River was high, with the fluctuating area accounting for 8.79% of the total area. The results of local spatial autocorrelation show that the high-value areas of carbon storage are mainly distributed in the west and southeast of the study area, and the low-value areas are mainly distributed in the middle of the study area, exhibiting characteristics of “high values surrounding low values” in space. (3) The simulation results of carbon storage in the middle reaches of the Yangtze River in 2035 showed that the ecological protection scenario was better than the other scenarios in terms of the mean level, functional performance, and patch presentation.

Suggested Citation

  • Hu Chen & Yi Sun & Diwei Tang & Jian Song & Yi Tu & Qi Zhang, 2025. "The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model," Sustainability, MDPI, vol. 17(13), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6067-:d:1693245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nataliya Stranadko, 2022. "Global climate governance: rising trend of translateral cooperation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(4), pages 639-657, December.
    2. Chen, Wanxu & Chi, Guangqing & Li, Jiangfeng, 2020. "The spatial aspect of ecosystem services balance and its determinants," Land Use Policy, Elsevier, vol. 90(C).
    3. Charlotte Nakakaawa & Paul Vedeld & Jens Aune, 2011. "Spatial and temporal land use and carbon stock changes in Uganda: implications for a future REDD strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(1), pages 25-62, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanxu Chen & Guangqing Chi & Jiangfeng Li, 2020. "Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
    2. Tao, Jieyi & Lu, Yuqi & Ge, Dazhuan & Dong, Ping & Gong, Xiao & Ma, Xiaobin, 2022. "The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the Huaihai Economic Zone, China," Land Use Policy, Elsevier, vol. 122(C).
    3. Liang Zheng & Yajing Wang & Hui Yang & Yuzhe Bi & Lei Xu & Ying Wang, 2024. "Identifying Trade-Offs and Synergies of Production–Living–Ecological Functions and Their Drivers: The Case of Yangtze River Urban Agglomerations in China," Land, MDPI, vol. 13(8), pages 1-20, August.
    4. Batara Surya & Despry Nur Annisa Ahmad & Harry Hardian Sakti & Hernita Sahban, 2020. "Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia," Land, MDPI, vol. 9(3), pages 1-43, March.
    5. Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).
    6. Xingjia Wang & Dongyan Wang & Wanying Gao & Jiaxi Lu & Xiaotong Jin, 2022. "Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    7. Sipei Pan & Jiale Liang & Wanxu Chen & Jiangfeng Li & Ziqi Liu, 2021. "Gray Forecast of Ecosystem Services Value and Its Driving Forces in Karst Areas of China: A Case Study in Guizhou Province, China," IJERPH, MDPI, vol. 18(23), pages 1-20, November.
    8. Min Fan & Hideaki Shibata, 2016. "Water yield, nitrogen and sediment retentions in Northern Japan (Teshio river watershed): land use change scenario analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 119-133, January.
    9. Wenbo Cai & Wei Jiang & Hongyu Du & Ruishan Chen & Yongli Cai, 2021. "Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    10. Di Zhan & Bin Quan & Jia Liao, 2025. "The Spatiotemporal Evolution and Coupling Coordination of LUCC and Landscape Ecological Risk in Ecologically Vulnerable Areas: A Case Study of the Wanzhou–Dazhou–Kaizhou Region," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    11. Chen, Wanxu & Chi, Guangqing, 2022. "Urbanization and ecosystem services: The multi-scale spatial spillover effects and spatial variations," Land Use Policy, Elsevier, vol. 114(C).
    12. He, Juan & Shi, Xueyi & Fu, Yangjun & Yuan, Ye, 2020. "Evaluation and simulation of the impact of land use change on ecosystem services trade-offs in ecological restoration areas, China," Land Use Policy, Elsevier, vol. 99(C).
    13. Katusiime, Juliet & Schütt, Brigitta & Mutai, Noah, 2023. "The relationship of land tenure, land use and land cover changes in Lake Victoria basin," Land Use Policy, Elsevier, vol. 126(C).
    14. Wang, Yong & Zhao, Wenhao & Ma, Xuejiao, 2024. "The spatial spillover impact of artificial intelligence on energy efficiency: Empirical evidence from 278 Chinese cities," Energy, Elsevier, vol. 312(C).
    15. Linghua Liu & Liang Zheng & Ying Wang & Chongchong Liu & Bowen Zhang & Yuzhe Bi, 2023. "Land Use and Ecosystem Services Evolution in Danjiangkou Reservoir Area, China: Implications for Sustainable Management of National Projects," Land, MDPI, vol. 12(4), pages 1-18, March.
    16. Ning Xu & Wanxu Chen & Sipei Pan & Jiale Liang & Jiaojiao Bian, 2022. "Evolution Characteristics and Formation Mechanism of Production-Living-Ecological Space in China: Perspective of Main Function Zones," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    17. Vrebos, Dirk & Staes, Jan & Vandenbroucke, Tom & D׳Haeyer, Tom & Johnston, Robyn & Muhumuza, Moses & Kasabeke, Clovis & Meire, Patrick, 2015. "Mapping ecosystem service flows with land cover scoring maps for data-scarce regions," Ecosystem Services, Elsevier, vol. 13(C), pages 28-40.
    18. Jie Song & Xinyu Fu & Ruoniu Wang & Zhong-Ren Peng & Zongni Gu, 2018. "Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 703-733, June.
    19. Xufang Zhang & Yu Yang & Minghua Zhao & Rongqing Han & Shijie Yang & Xiaojie Wang & Xiantao Tang & Weijuan Qu, 2022. "Trade-Off Analyses of Multiple Ecosystem Services and Their Drivers in the Shandong Yellow River Basin," IJERPH, MDPI, vol. 19(23), pages 1-29, November.
    20. Ke Wang & Shuang Ma & Shuangjin Li & Jue Wang, 2025. "Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances," Sustainability, MDPI, vol. 17(12), pages 1-25, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6067-:d:1693245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.