IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5863-d1687562.html
   My bibliography  Save this article

Urban Flood Risk Sustainable Management: Risk Analysis of Dam Break Induced Flash Floods in Mountainous Valley Cities

Author

Listed:
  • Yuanyuan Liu

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China)

  • Yesen Liu

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China)

  • Qian Yu

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China)

  • Shu Liu

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

Small reservoirs in hilly areas serve as critical water conservancy infrastructure, playing an essential role in flood control, irrigation, and regional water security. However, dam-break events pose significant risks to downstream urban areas, threatening the sustainability and resilience of cities. This study takes Guangyuan City as a case study and employs numerical simulation methods—including dam-break modeling, hydrological modeling, and hydrodynamic modeling—to analyze the impact of dam-break floods on downstream urban regions. The results reveal that dam failure in small reservoirs can cause peak flood velocities exceeding 15 m/s, severely endangering urban infrastructure, ecosystems, and public safety. Additionally, for reservoirs with large catchment areas, dam-break floods combined with rainfall-induced flash floods may create compound disaster effects, intensifying urban flood risks. These findings underscore the importance of sustainable reservoir management and integrated flood risk strategies to enhance urban resilience and reduce disaster vulnerability. This research contributes to sustainable development by providing scientific insights and practical support for flood risk mitigation and resilient infrastructure planning in mountainous regions.

Suggested Citation

  • Yuanyuan Liu & Yesen Liu & Qian Yu & Shu Liu, 2025. "Urban Flood Risk Sustainable Management: Risk Analysis of Dam Break Induced Flash Floods in Mountainous Valley Cities," Sustainability, MDPI, vol. 17(13), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5863-:d:1687562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismail Haltas & Gokmen Tayfur & Sebnem Elci, 2016. "Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2103-2119, April.
    2. Corey Froese & Francisco Moreno, 2014. "Structure and components for the emergency response and warning system on Turtle Mountain, Alberta, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1689-1712, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Ogulcan Marangoz & Tugce Anilan, 2022. "Two-dimensional modeling of flood wave propagation in residential areas after a dam break with application of diffusive and dynamic wave approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 429-449, January.
    2. Anik Saha & Sunil Saha, 2021. "Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4453-4483, March.
    3. Mohamed Hafedh Hamza & Afnan Mohammed Saegh, 2023. "Flash Flood Risk Assessment Due to a Possible Dam Break in Urban Arid Environment, the New Um Al-Khair Dam Case Study, Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    4. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    5. Hongjie Yu & Yue-Ping Xu & Hua Zhong & Yen-Ming Chiang & Li Liu, 2024. "Exploring the impact of urbanization on flood characteristics with the SCS-TRITON method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3213-3238, March.
    6. Shokhrukh-Mirzo Jalilov & Mohamed Kefi & Pankaj Kumar & Yoshifumi Masago & Binaya Kumar Mishra, 2018. "Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    7. Ismail Haltas & Sebnem Elçi & Gokmen Tayfur, 2016. "Numerical Simulation of Flood Wave Propagation in Two-Dimensions in Densely Populated Urban Areas due to Dam Break," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5699-5721, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5863-:d:1687562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.