IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5801-d1686011.html
   My bibliography  Save this article

Nomogram-Based Rainwater Harvesting Design for a Sustainable Residential Water Supply

Author

Listed:
  • Roberto Magini

    (Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Maria Valenti Ben Moussa

    (Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Davide Luciano De Luca

    (Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, 00184 Rome, Italy)

Abstract

Water scarcity is a critical issue exacerbated by climate change, urbanization, and population growth, particularly in regions with insufficient water infrastructure. Rainwater harvesting (RWH) systems offer a sustainable solution to mitigate water shortages by collecting and storing rainwater for non-potable uses. This study focuses on the design, efficiency, and reliability of RWH systems in residential environments, with an emphasis on optimizing the sizing of storage volumes and collection areas. Using a behavioural simulation model, we generate nomograms that facilitate the design of RWH systems by analyzing the interactions among storage capacity, collection area, rainfall patterns, and water demand. Specifically, this paper evaluates the effectiveness of RWH systems through efficiency and reliability metrics such as water savings, mains reliance, overflow discharge, and system reliability. The proposed procedure integrates stochastic rainfall and water demand data, including a detailed analysis of toilet usage, in order to simulate the performance of RWH systems across different time scales. Case studies in Italy and Denmark are used to assess the influence of climatic differences on system performance. The findings provide a comprehensive methodology for RWH system design, and offer valuable insights into improving a sustainable water management strategy.

Suggested Citation

  • Roberto Magini & Maria Valenti Ben Moussa & Davide Luciano De Luca, 2025. "Nomogram-Based Rainwater Harvesting Design for a Sustainable Residential Water Supply," Sustainability, MDPI, vol. 17(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5801-:d:1686011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    2. Monzur Alam Imteaz & Vassiliki Boulomytis, 2022. "Improvement of Rainwater Harvesting Analysis Through an Hourly Timestep Model in Comparison with a Daily Timestep Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2611-2622, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashim, H. & Hudzori, A. & Yusop, Z. & Ho, W.S., 2013. "Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 1-9.
    2. Chen Shiguang & Zeng Haoxin & Sun Hongwei & Liu Song & Yang Yongmin, 2024. "How to determine the cistern volume of rainwater harvesting system: an analytical solution based on roof areas and water demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20413-20438, August.
    3. Amjad Khan & Yoonkyung Park & Jongpyo Park & Reeho Kim, 2022. "Assessment of Rainwater Harvesting Facilities Tank Size Based on a Daily Water Balance Model: The Case of Korea," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    4. Monzur A. Imteaz & Hassaan Ahmad & Iqbal Hossain, 2023. "Pioneer Use of Pseudo Sub-Daily Timestep Model for Rainwater Harvesting Analysis: Acceptance over Hourly Model and Exploring Accuracy of Different Operating Algorithms," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    5. Elissavet Feloni & Panagiotis T. Nastos, 2024. "Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    6. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    7. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    8. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.
    9. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    10. Nandi, Santosh & Gonela, Vinay, 2022. "Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives," Utilities Policy, Elsevier, vol. 77(C).
    11. Yan-Zhao Jin & Lu-Wen Zhou & Kwong Fai Andrew Lo, 2018. "Optimum Matching Model Using Long-Term Computing on Safer Rural Domestic Water Supply Based on Rainwater Harvesting," IJERPH, MDPI, vol. 15(12), pages 1-8, December.
    12. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.
    13. Nguyen, Duc Canh & Han, Moo Young, 2017. "Proposal of simple and reasonable method for design of rainwater harvesting system from limited rainfall data," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 219-227.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5801-:d:1686011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.