IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5622-d1682046.html
   My bibliography  Save this article

A Game-Theoretic Combination Weighting–TOPSIS Integrated Model for Sustainable Floodplain Risk Assessment Under Multi-Return-Period Scenarios

Author

Listed:
  • Xuejing Ruan

    (College of Civil Engineering and Architecture, Qingdao Agricultural University, Qingdao 266109, China
    School of Engineering, Design and Built Environment, Western Sydney University, Sydney 2745, Australia)

  • Hai Sun

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Qiwei Yu

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Wenchi Shou

    (School of Engineering, Design and Built Environment, Western Sydney University, Sydney 2745, Australia)

  • Jun Wang

    (School of Engineering, Design and Built Environment, Western Sydney University, Sydney 2745, Australia)

Abstract

Global climate change has altered precipitation patterns, leading to an increased frequency and intensity of extreme rainfall events and introducing greater uncertainty to flood risk in river basins. Traditional assessments often rely on static indicators and single-design scenarios, failing to reflect the dynamic evolution of floods under varying intensities. Additionally, oversimplified topographic representations compromise the accuracy of high-risk-zone identification, limiting the effectiveness of precision flood management. To address these limitations, this study constructs multi-return-period flood scenarios and applies a coupled 1D/2D hydrodynamic model to analyze the spatial evolution of flood hazards and extract refined hazard indicators. A multi-source weighting framework is proposed by integrating the triangular fuzzy analytic hierarchy process (TFAHP) and the entropy weight method–criteria importance through intercriteria correlation (EWM-CRITIC), with game-theoretic strategies employed to achieve optimal balance among different weighting sources. These are combined with the technique for order preference by similarity to an ideal solution (TOPSIS) to develop a continuous flood risk assessment model. The approach is applied to the Georges River Basin in Australia. The findings support data-driven flood risk management strategies that benefit policymakers, urban planners, and emergency services, while also empowering local communities to better prepare for and respond to flood risks. By promoting resilient, inclusive, and sustainable urban development, this research directly contributes to the achievement of United Nations Sustainable Development Goal 11 (Sustainable Cities and Communities).

Suggested Citation

  • Xuejing Ruan & Hai Sun & Qiwei Yu & Wenchi Shou & Jun Wang, 2025. "A Game-Theoretic Combination Weighting–TOPSIS Integrated Model for Sustainable Floodplain Risk Assessment Under Multi-Return-Period Scenarios," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5622-:d:1682046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    2. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    3. Fabrizio Terenzio Gizzi & Vittorio Bovolin & Paolo Villani & Maria Rosaria Potenza & Simona Voria & Antonio Minervino Amodio, 2024. "Rewinding the Tape: Documentary Heritage to (Re)discover “Lost” Natural Hazards—Evidence and Inferences from Southern Italy," Sustainability, MDPI, vol. 16(7), pages 1-39, March.
    4. Haowei Zhao & Ming Zhong & Linfeng Li & Muhammad Safdar & Ziran Zhang, 2023. "A Comprehensive Evaluation Method for Planning and Design of Self-Sufficient Wind Power Energy Systems at Ports," Sustainability, MDPI, vol. 15(23), pages 1-22, November.
    5. Feifeng Cao & Huangyuan Wang & Conglin Zhang & Weibo Kong, 2023. "Social Vulnerability Evaluation of Natural Disasters and Its Spatiotemporal Evolution in Zhejiang Province, China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    6. Hae-Yeol Kang & Seung Taek Chae & Eun-Sung Chung, 2023. "Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjib Mondal & Pritam Ghosh & Pratima Rohatgi, 2023. "Village‐level livelihood security: A case study on a wasteland‐dominated forest fringe region of rural India," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(5), pages 1019-1036, June.
    2. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    3. Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.
    4. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    5. Ismallianto Isia & Tony Hadibarata & Muhammad Noor Hazwan Jusoh & Rajib Kumar Bhattacharjya & Noor Fifinatasha Shahedan & Norma Latif Fitriyani & Muhammad Syafrudin, 2023. "Identifying Factors to Develop and Validate Social Vulnerability to Floods in Malaysia: A Systematic Review Study," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    6. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    7. Siqi Wan & Zhile Shu & Xin Zhang & Wenwu Zhong & Haikuan Wu & Shun Kang & Tingyue Zheng, 2024. "Research on the Disaster Management of China’s Ethnic Minority Autonomous Regions in the Development of Modernization Construction—Taking Mabian Yi Autonomous County in Southern Sichuan as an Example," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    8. Abdul Baser Qasimi & Vahid Isazade & Ronny Berndtsson, 2024. "Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1367-1394, January.
    9. Ibrar Ullah & Gábor Kovács & Tibor Lenner & Péter Góczán, 2025. "Age-Based Community Resilience Assessment Using Flood Resilience Index Approach: Inference from the Gyor City, Hungary," Geographies, MDPI, vol. 5(2), pages 1-17, April.
    10. Lihui Wu & Da Ma & Jinling Li, 2023. "Assessment of the Regional Vulnerability to Natural Disasters in China Based on DEA Model," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    11. Irem Sahmutoglu & Alev Taskin & Ertugrul Ayyildiz, 2023. "Assembly area risk assessment methodology for post-flood evacuation by integrated neutrosophic AHP-CODAS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1071-1103, March.
    12. Qingmu Su, 2020. "Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2213-2237, December.
    13. Vikash Shivhare & Alok Kumar & Reetesh Kumar & Satyanarayan Shashtri & Javed Mallick & Chander Kumar Singh, 2024. "Flood susceptibility and flood frequency modeling for lower Kosi Basin, India using AHP and Sentinel-1 SAR data in geospatial environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11579-11610, October.
    14. Fang Liu & Peijun Lu & Songtao Wu, 2025. "Spatio-Temporal Dynamic of Rural Resilience to Multiple Water-Related Hazards: A Case Study in Zhejiang Province, China," Sustainability, MDPI, vol. 17(9), pages 1-21, April.
    15. Sadhan Malik & Subodh Chandra Pal & Alireza Arabameri & Indrajit Chowdhuri & Asish Saha & Rabin Chakrabortty & Paramita Roy & Biswajit Das, 2021. "GIS-based statistical model for the prediction of flood hazard susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16713-16743, November.
    16. José Vladimir Morales-Ruano & Maximino Reyes-Umaña & Francisco Rubén Sandoval-Vázquez & Hilda Janet Arellano-Wences & Justiniano González-González & Columba Rodríguez-Alviso, 2022. "Flood Susceptibility in the Lower Course of the Coyuca River, Mexico: A Multi-Criteria Decision Analysis Model," Sustainability, MDPI, vol. 14(19), pages 1-24, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5622-:d:1682046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.