IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4835-d1663596.html
   My bibliography  Save this article

Reducing CO 2 Emissions in Urban Infrastructure: The Role of Siliceous Fly Ash in Sustainable Mortar Design

Author

Listed:
  • Nikolaos Chousidis

    (School of Chemical Engineering, Department of Material Science & Technology, National Technical University of Athens, 15772 Athens, Greece)

  • George Batis

    (School of Chemical Engineering, Department of Material Science & Technology, National Technical University of Athens, 15772 Athens, Greece)

Abstract

The incorporation of industrial by-products such as fly ash (FA) into cementitious materials plays a vital role in promoting environmental sustainability during cement production. This study evaluates the feasibility of using siliceous fuel fly ash, sourced from thermal power stations in the Rhenish region of Germany, as a partial cement replacement in mortar formulations. Mortar specimens with FA replacement levels ranging from 5 wt% to 30 wt% were prepared and tested. Data were collected through standardized laboratory testing of mechanical properties (compressive and flexural strength), physical characteristics (porosity, sorptivity) and microstructural analysis via SEM and XRD. The results showed that increasing FA content generally led to reductions in strength and increases in porosity and sorptivity, due to the mineralogical composition and higher water demand linked to the porous FA structure. However, when FA was used at levels not exceeding 10 wt%, the physical and mechanical properties remained within acceptable limits for construction applications. Additionally, the use of plasticizing admixtures proved effective in mitigating workability and strength issues by reducing the water-to-binder ratio. These findings highlight that, despite certain limitations, siliceous FA can be safely and effectively used in low percentages, contributing to sustainable mortar production and reducing reliance on Portland cement. In addition, the use of fly ash contributes to reduced CO 2 emissions and lower production costs, promoting sustainable and cost-efficient construction solutions.

Suggested Citation

  • Nikolaos Chousidis & George Batis, 2025. "Reducing CO 2 Emissions in Urban Infrastructure: The Role of Siliceous Fly Ash in Sustainable Mortar Design," Sustainability, MDPI, vol. 17(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4835-:d:1663596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sérgio Roberto Da Silva & Jairo José de Oliveira Andrade, 2022. "A Review on the Effect of Mechanical Properties and Durability of Concrete with Construction and Demolition Waste (CDW) and Fly Ash in the Production of New Cement Concrete," Sustainability, MDPI, vol. 14(11), pages 1-27, May.
    2. Sabbie A. Miller & Frances C. Moore, 2020. "Climate and health damages from global concrete production," Nature Climate Change, Nature, vol. 10(5), pages 439-443, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Xi Deng & Xiao Li & Xiao-Juan Li & Tai-Bing Wei, 2023. "Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    2. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Xiao, Yihao & Xue, Yahui, 2024. "A review on application of microwave in cement life cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Roberto Cerchione & Francesco Colangelo & Ilenia Farina & Patrizia Ghisellini & Renato Passaro & Sergio Ulgiati, 2023. "Life Cycle Assessment of Concrete Production within a Circular Economy Perspective," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    5. Xinhang Xu & Chongchong Qi & Xabier M. Aretxabaleta & Chundi Ma & Dino Spagnoli & Hegoi Manzano, 2024. "The initial stages of cement hydration at the molecular level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Otavio Cavalett & Marcos D. B. Watanabe & Mari Voldsund & Simon Roussanaly & Francesco Cherubini, 2024. "Paving the way for sustainable decarbonization of the European cement industry," Nature Sustainability, Nature, vol. 7(5), pages 568-580, May.
    7. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Chunhui Chen & Zesen Peng & JiaYu Gu & Yaxiong Peng & Xiaoyang Huang & Li Wu, 2020. "Exploring Environmentally Friendly Biopolymer Material Effect on Soil Tensile and Compressive Behavior," IJERPH, MDPI, vol. 17(23), pages 1-13, December.
    9. Izhar Hussain Shah & Sabbie A. Miller & Daqian Jiang & Rupert J. Myers, 2022. "Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    11. Jaksada Thumrongvut & Sittichai Seangatith & Chayakrit Phetchuay & Cherdsak Suksiripattanapong, 2022. "Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    12. Danyang Cheng & David M. Reiner & Fan Yang & Can Cui & Jing Meng & Yuli Shan & Yunhui Liu & Shu Tao & Dabo Guan, 2023. "Projecting future carbon emissions from cement production in developing countries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Nidhi Kalra & Edmundo Molina-Pérez & James Syme & Fernando Esteves & Hermilio Cortés & Mateo Tonatiuh Rodríguez-Cervantes & Víctor Manuel Espinoza-Juárez & Marcela Jaramillo & Richard Baron & Claudio , 2023. "The Benefits and Costs of Reaching Net Zero Emissions in Latin America and the Caribbean," Post-Print halshs-04458161, HAL.
    14. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Fernando Antonio da Silva Fernandes & Dayriane do Socorro de Oliveira Costa & Camilo Andrés Guerrero Martin & João Adriano Rossignolo, 2023. "Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
    16. Shiqing Yang & Mingjie Gu & Hongyi Lin & Yue Gong, 2023. "Property Improvement of Recycled Coarse Aggregate by Accelerated Carbonation Treatment under Different Curing Conditions," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4835-:d:1663596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.