IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2025-d1348878.html
   My bibliography  Save this article

Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity

Author

Listed:
  • Pablo L. Peri

    (Instituto Nacional de Tecnología Agropecuaria (INTA), Río Gallegos 9400, Argentina
    Natural Resources Department, Universidad Nacional de la Patagonia Austral (UNPA)—CONICET, Río Gallegos 9400, Argentina)

  • Juan Gaitán

    (Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Luján, Luján 6700, Argentina)

  • Boris Díaz

    (Instituto Nacional de Tecnología Agropecuaria (INTA), Río Gallegos 9400, Argentina)

  • Leandro Almonacid

    (Instituto Nacional de Tecnología Agropecuaria (INTA), Río Gallegos 9400, Argentina)

  • Cristian Morales

    (Instituto Nacional de Tecnología Agropecuaria (INTA), Río Gallegos 9400, Argentina)

  • Francisco Ferrer

    (Natural Resources Department, Universidad Nacional de la Patagonia Austral (UNPA)—CONICET, Río Gallegos 9400, Argentina)

  • Romina Lasagno

    (Instituto Nacional de Tecnología Agropecuaria (INTA), Río Gallegos 9400, Argentina)

  • Julián Rodríguez-Souilla

    (Laboratorio de Recursos Agroforestales, Centro Austral de Investigaciones Científicas (CADIC CONICET), Ushuaia 9410, Argentina)

  • Guillermo Martínez Pastur

    (Laboratorio de Recursos Agroforestales, Centro Austral de Investigaciones Científicas (CADIC CONICET), Ushuaia 9410, Argentina)

Abstract

Vegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in anthropized environments. The main objective of the present work was to determine the spatial patterns of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also, we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land cover with a reliable discrimination level from field measurements. We selected 31 potential predictive environmental dataset covariates, which represent key factors for the spatial distribution of land cover such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A total of 270,292 sampling points were used for validation of the obtained classification map. The main land cover area estimates extracted from the map at the regional level identified about 142,085 km 2 of grasslands (representing 58.1% of the total area), 38,355 km 2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km 2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented the maximum SOC (11.3–11.8 kg m −2 ), followed by peatlands (10.6 kg m −2 ) and deciduous Nothofagus forests (10.5 kg m −2 ). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open deciduous forests ( Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate land cover and VT map that provides crucial information for ecological studies, biodiversity conservation, vegetation management and restoration, and regional strategic decision-making.

Suggested Citation

  • Pablo L. Peri & Juan Gaitán & Boris Díaz & Leandro Almonacid & Cristian Morales & Francisco Ferrer & Romina Lasagno & Julián Rodríguez-Souilla & Guillermo Martínez Pastur, 2024. "Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2025-:d:1348878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    2. Canedoli, Claudia & Ferrè, Chiara & Abu El Khair, Davide & Comolli, Roberto & Liga, Claudio & Mazzucchelli, Francesca & Proietto, Angela & Rota, Noemi & Colombo, Giacomo & Bassano, Bruno & Viterbi, Ra, 2020. "Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands," Ecosystem Services, Elsevier, vol. 44(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Examining policy−institution−program (PIP) responses against the drivers of ecosystem dynamics. A chronological review (1960–2020) from Nepal," Land Use Policy, Elsevier, vol. 132(C).
    2. Busch, Christin & Specht, Kathrin & Inostroza, Luis & Falke, Matthias & Zepp, Harald, 2024. "Disentangling cultural ecosystem services co-production in urban green spaces through social media reviews," Ecosystem Services, Elsevier, vol. 70(C).
    3. Guillermo J. Martínez Pastur & Dante Loto & Julián Rodríguez-Souilla & Eduarda M. O. Silveira & Juan M. Cellini & Pablo L. Peri, 2024. "Different Approaches of Forest Type Classifications for Argentina Based on Functional Forests and Canopy Cover Composition by Tree Species," Resources, MDPI, vol. 13(5), pages 1-20, April.
    4. Shuzhen Song & Xingyan Chen & Yuehua Song & Yongkuan Chi, 2024. "Vegetation Restoration Patterns Influence the Supply and Interrelations of Grassland Ecosystem Services in Karst Desertification Control," Land, MDPI, vol. 13(12), pages 1-16, November.
    5. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    6. Joel C. Creed & Laura Sol Aranda & Júlia Gomes de Sousa & Caio Barros Brito do Bem & Beatriz Sant’Anna Vasconcelos Marafiga Dutra & Marianna Lanari & Virgínia Eduarda de Sousa & Karine M. Magalhães & , 2023. "A Synthesis of Provision and Impact in Seagrass Ecosystem Services in the Brazilian Southwest Atlantic," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    7. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    8. Xiaoyu Li & Shudan Gong & Qingdong Shi & Yuan Fang, 2023. "A Review of Ecosystem Services Based on Bibliometric Analysis: Progress, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    9. Dai, Xuhuan & Li, Bo & Zheng, Hua & Yang, Yanzheng & Yang, Zihan & Peng, Chenchen, 2023. "Can sedentarization decrease the dependence of pastoral livelihoods on ecosystem services?," Ecological Economics, Elsevier, vol. 203(C).
    10. Caoxin Chen & Shiyi Wang & Meixi Liu & Ke Huang & Qiuyi Guo & Wei Xie & Jiangjun Wan, 2025. "Beyond Linearity: Uncovering the Complex Spatiotemporal Drivers of New-Type Urbanization and Eco-Environmental Resilience Coupling in China’s Chengdu–Chongqing Economic Circle with Machine Learning," Land, MDPI, vol. 14(7), pages 1-29, July.
    11. Wei Jiang & Rainer Marggraf, 2021. "Making Intangibles Tangible: Identifying Manifestations of Cultural Ecosystem Services in a Cultural Landscape," Land, MDPI, vol. 11(1), pages 1-14, December.
    12. Pierre E. Galand & Hans-Joachim Ruscheweyh & Guillem Salazar & Corentin Hochart & Nicolas Henry & Benjamin C. C. Hume & Pedro H. Oliveira & Aude Perdereau & Karine Labadie & Caroline Belser & Emilie B, 2023. "Diversity of the Pacific Ocean coral reef microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Anna M. Hansson & Eja Pedersen & Niklas P. E. Karlsson & Stefan E. B. Weisner, 2023. "Barriers and drivers for sustainable business model innovation based on a radical farmland change scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8083-8106, August.
    14. Lili Zhang & Baoqing Hu & Ze Zhang & Gaodou Liang & Simin Huang, 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation," Land, MDPI, vol. 12(4), pages 1-25, March.
    15. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    16. Bell-James, Justine & Boardman, Tessa & Foster, Rose, 2020. "Can’t see the (mangrove) forest for the trees: Trends in the legal and policy recognition of mangrove and coastal wetland ecosystem services in Australia," Ecosystem Services, Elsevier, vol. 45(C).
    17. Xiaomeng Guo & Li Wang & Qiang Fu & Fang Ma, 2024. "Ecological Function Zoning Framework for Small Watershed Ecosystem Services Based on Multivariate Analysis from a Scale Perspective," Land, MDPI, vol. 13(7), pages 1-18, July.
    18. Haslmayr, Hans-Peter & Steinbrunner, Barbara, 2024. "Alpine Böden und ihre zahlreichen Funktionen: Integration von Bodenökosystemleistungen in die Raumplanung," Raumentwicklung – ARL-Journal für Wissenschaft und Praxis, ARL – Akademie für Raumentwicklung in der Leibniz-Gemeinschaft, vol. 54(01), pages 28-32.
    19. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    20. Arturo Sanchez-Porras & María Guadalupe Tenorio-Arvide & Ricardo Darío Peña-Moreno & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2018. "Evaluation of the Potential Change to the Ecosystem Service Provision Due to Industrialization," Sustainability, MDPI, vol. 10(9), pages 1-20, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2025-:d:1348878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.