IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2023-d1530527.html
   My bibliography  Save this article

Vegetation Restoration Patterns Influence the Supply and Interrelations of Grassland Ecosystem Services in Karst Desertification Control

Author

Listed:
  • Shuzhen Song

    (College of Tourism Management, Guizhou University of Commerce, Guiyang 550014, China
    School of Karst Science, Guizhou Normal University, Guiyang 550025, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550025, China)

  • Xingyan Chen

    (School of Karst Science, Guizhou Normal University, Guiyang 550025, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550025, China)

  • Yuehua Song

    (School of Karst Science, Guizhou Normal University, Guiyang 550025, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550025, China)

  • Yongkuan Chi

    (School of Karst Science, Guizhou Normal University, Guiyang 550025, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550025, China)

Abstract

An appropriate vegetation restoration pattern is crucial for maintaining and enhancing ecosystem functions and services in karst rocky desertification control areas. However, it is still unclear whether different vegetation restoration patterns will aggravate the trade-off of grassland ecosystem services in this area. This study focuses on grassland ecosystems in the karst desertification control area, comparing artificial restoration measures ( Dactylis glomerata single-species sowing grassland, DG; Lolium perenne single-species sowing grassland, LP; Lolium perenne + Trifolium repens mixed-species sowing grassland, LT) with natural restoration measures (NG). Seven ecosystem services (forage yield, soil retention, soil water conservation, carbon fixation and release, soil carbon storage, soil nutrient retention, and biodiversity conservation) as well as total ecosystem services were quantified using field monitoring data. The relationships between these services were evaluated through Spearman correlation analysis. The results showed that different vegetation restoration patterns significantly influenced the provisioning, regulating, and supporting services of the grassland ecosystem ( p < 0.001). Three types of relationships were observed (trade-off, synergy, and neutral), but the trade-off relationship was not significant ( p > 0.05). The total ecosystem service of LT (0.79) was significantly higher than that of NG (0.21), DG (0.36), and LP (0.41), with a significant synergy observed between soil nutrient conservation, forage yield, and carbon sequestration and oxygen release ( p < 0.05). Therefore, LT is considered the best vegetation restoration practice for the karst rocky desertification control area compared with other patterns. This study provides theoretical guidance for vegetation restoration in degraded karst ecosystems.

Suggested Citation

  • Shuzhen Song & Xingyan Chen & Yuehua Song & Yongkuan Chi, 2024. "Vegetation Restoration Patterns Influence the Supply and Interrelations of Grassland Ecosystem Services in Karst Desertification Control," Land, MDPI, vol. 13(12), pages 1-16, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2023-:d:1530527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    2. Anu Eskelinen & W. Stanley Harpole & Maria-Theresa Jessen & Risto Virtanen & Yann Hautier, 2022. "Light competition drives herbivore and nutrient effects on plant diversity," Nature, Nature, vol. 611(7935), pages 301-305, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Examining policy−institution−program (PIP) responses against the drivers of ecosystem dynamics. A chronological review (1960–2020) from Nepal," Land Use Policy, Elsevier, vol. 132(C).
    2. Busch, Christin & Specht, Kathrin & Inostroza, Luis & Falke, Matthias & Zepp, Harald, 2024. "Disentangling cultural ecosystem services co-production in urban green spaces through social media reviews," Ecosystem Services, Elsevier, vol. 70(C).
    3. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    4. Joel C. Creed & Laura Sol Aranda & Júlia Gomes de Sousa & Caio Barros Brito do Bem & Beatriz Sant’Anna Vasconcelos Marafiga Dutra & Marianna Lanari & Virgínia Eduarda de Sousa & Karine M. Magalhães & , 2023. "A Synthesis of Provision and Impact in Seagrass Ecosystem Services in the Brazilian Southwest Atlantic," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    5. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    6. Xiaoyu Li & Shudan Gong & Qingdong Shi & Yuan Fang, 2023. "A Review of Ecosystem Services Based on Bibliometric Analysis: Progress, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    7. Dai, Xuhuan & Li, Bo & Zheng, Hua & Yang, Yanzheng & Yang, Zihan & Peng, Chenchen, 2023. "Can sedentarization decrease the dependence of pastoral livelihoods on ecosystem services?," Ecological Economics, Elsevier, vol. 203(C).
    8. Wei Jiang & Rainer Marggraf, 2021. "Making Intangibles Tangible: Identifying Manifestations of Cultural Ecosystem Services in a Cultural Landscape," Land, MDPI, vol. 11(1), pages 1-14, December.
    9. Pierre E. Galand & Hans-Joachim Ruscheweyh & Guillem Salazar & Corentin Hochart & Nicolas Henry & Benjamin C. C. Hume & Pedro H. Oliveira & Aude Perdereau & Karine Labadie & Caroline Belser & Emilie B, 2023. "Diversity of the Pacific Ocean coral reef microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Anna M. Hansson & Eja Pedersen & Niklas P. E. Karlsson & Stefan E. B. Weisner, 2023. "Barriers and drivers for sustainable business model innovation based on a radical farmland change scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8083-8106, August.
    11. Lili Zhang & Baoqing Hu & Ze Zhang & Gaodou Liang & Simin Huang, 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation," Land, MDPI, vol. 12(4), pages 1-25, March.
    12. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    13. Bell-James, Justine & Boardman, Tessa & Foster, Rose, 2020. "Can’t see the (mangrove) forest for the trees: Trends in the legal and policy recognition of mangrove and coastal wetland ecosystem services in Australia," Ecosystem Services, Elsevier, vol. 45(C).
    14. Xiaomeng Guo & Li Wang & Qiang Fu & Fang Ma, 2024. "Ecological Function Zoning Framework for Small Watershed Ecosystem Services Based on Multivariate Analysis from a Scale Perspective," Land, MDPI, vol. 13(7), pages 1-18, July.
    15. Haslmayr, Hans-Peter & Steinbrunner, Barbara, 2024. "Alpine Böden und ihre zahlreichen Funktionen: Integration von Bodenökosystemleistungen in die Raumplanung," Raumentwicklung – ARL-Journal für Wissenschaft und Praxis, ARL – Akademie für Raumentwicklung in der Leibniz-Gemeinschaft, vol. 54(1), pages 28-32.
    16. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    17. Arturo Sanchez-Porras & María Guadalupe Tenorio-Arvide & Ricardo Darío Peña-Moreno & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2018. "Evaluation of the Potential Change to the Ecosystem Service Provision Due to Industrialization," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    18. Makovníková Jarmila & Pálka Boris & Kološta Stanislav & Flaška Filip & Orságová Katarína & Spišiaková Mária, 2020. "Non-Monetary Assessment and Mapping of the Potential of Agroecosystem Services in Rural Slovakia," European Countryside, Sciendo, vol. 12(2), pages 257-276, June.
    19. Zhiming Zhang & Fengman Fang & Youru Yao & Qing Ji & Xiaojing Cheng, 2024. "Exploring the Response of Ecosystem Services to Socioecological Factors in the Yangtze River Economic Belt, China," Land, MDPI, vol. 13(6), pages 1-18, May.
    20. Yahui Wang & Erfu Dai & Yue Qi & Yao Fan, 2023. "Study on the Ecosystem Service Supply–Demand Relationship and Development Strategies in Mountains in Southwest China Based on Different Spatial Scales," Land, MDPI, vol. 12(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2023-:d:1530527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.