IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p504-d1314118.html
   My bibliography  Save this article

Exploiting Deep Eutectic Solvent-like Mixtures for Fractionation Biomass, and the Mechanism Removal of Lignin: A Review

Author

Listed:
  • Veronika Jančíková

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Michal Jablonský

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

Abstract

Green solvents, which include deep eutectic solvent-like mixtures (DES-like mixtures), are categorized as ecological and economical solvents for the pretreatment and fractionation of different types of biomasses. DES-like mixtures represent a group of the most promising green solvents for lignocellulosic pretreatment and are currently used effectively in the biomass pretreatment process. The present work describes the latest applications of DES-like mixtures in biomass delignification processes and, at the same time, summarizes the mechanism of action and influence of DES-like mixture systems on the removal of lignin from different types of biomasses. The results of this review indicate that the physicochemical properties (acidity, hydrogen bond capacity, polarity, viscosity, and water content) of DES-like mixtures have a significant effect on the biomass fractionation process. In addition to the nature of components forming DES-like mixtures, the reaction conditions (temperature, time) influence the efficiency of delignification. Active protons obtained from the hydrogen bond donor facilitate proton-catalyzed bond cleavage during fractionation, where the most significant step is the destruction of the ether and ester bonds between polysaccharides and lignin. DES-like mixtures can depolymerize lignin with subsequent breakdown of the β−O−4 bonds.

Suggested Citation

  • Veronika Jančíková & Michal Jablonský, 2024. "Exploiting Deep Eutectic Solvent-like Mixtures for Fractionation Biomass, and the Mechanism Removal of Lignin: A Review," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:504-:d:1314118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiyu Chen & Ailin Wang & Cancan Yan & Shiwei Liu & Lu Li & Qiong Wu & Yue Liu & Yuxiang Liu & Genkuo Nie & Shuangxi Nie & Shuangquan Yao & Hailong Yu, 2023. "Study on the Solubility of Industrial Lignin in Choline Chloride-Based Deep Eutectic Solvents," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:504-:d:1314118. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.