IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10777-d1539699.html
   My bibliography  Save this article

Integrated Simulation of Groundwater Flow and Nitrate Transport in an Alluvial Aquifer Using MODFLOW and MT3D: Insights into Pollution Dynamics and Management Strategies

Author

Listed:
  • Abdessalam Laoufi

    (Laboratory n°25 Promotion of Water, Mineral and Soil Resources, Environmental Legislation and Technological Choices, University of Tlemcen, P.O. Box 119, Tlemcen 13000, Algeria)

  • Abderezzak Boudjema

    (Laboratory n°25 Promotion of Water, Mineral and Soil Resources, Environmental Legislation and Technological Choices, University of Tlemcen, P.O. Box 119, Tlemcen 13000, Algeria)

  • Sabrine Guettaia

    (Laboratory n°25 Promotion of Water, Mineral and Soil Resources, Environmental Legislation and Technological Choices, University of Tlemcen, P.O. Box 119, Tlemcen 13000, Algeria)

  • Abdessamed Derdour

    (Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, University Center of Naama, P.O. Box 66, Naama 45000, Algeria
    Laboratory for the Sustainable Management of Natural Resources in Arid and Semi-Arid Zones, University Center of Naama, P.O. Box 66, Naama 45000, Algeria)

  • Abdulrazak H. Almaliki

    (Department of Civil Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

Abstract

This study employs an integrated numerical modeling approach using MODFLOW and MT3D to simulate groundwater flow and nitrate transport in the alluvial aquifer of Hennaya plain. The groundwater flow model was calibrated and validated against observed hydraulic heads, showing excellent agreement in both steady-state and transient conditions, with a correlation coefficients (R 2 ) of 0.99 and 0.987, respectively. Meticulous calibration yielded adjusted hydraulic conductivity values between 10 −1 and 10 −11 m/s, with effective porosity ranging from 0.03 to 0.34 and total porosity values varying from 0.29 to 0.38 across the aquifer. Water budget analysis revealed that the aquifer’s primary recharge occurs from the southern side. Nitrate transport modeling indicated that advection is the dominant process, with contaminants migration predominantly occurring from south to north, following the groundwater flow direction. Pollution levels were found to decrease gradually with distance from sources, confirming agricultural activities and sewage disposal as primary contributors to nitrate contamination. Predictive scenarios over a 40-year period explored various management strategies, which suggest that maintaining current nitrogen input rates will lead to continued increases in nitrate pollution, while a 50% reduction in agricultural inputs could significantly improve groundwater quality. However, even with substantial reductions, nitrate concentrations are not expected to reach levels safe for drinking within the simulation timeframe. This study underscores the need for immediate and sustained action to address nitrate pollution in the Hennaya Plain aquifer, emphasizing the importance of stringent nitrogen management practices, particularly in the agricultural sector.

Suggested Citation

  • Abdessalam Laoufi & Abderezzak Boudjema & Sabrine Guettaia & Abdessamed Derdour & Abdulrazak H. Almaliki, 2024. "Integrated Simulation of Groundwater Flow and Nitrate Transport in an Alluvial Aquifer Using MODFLOW and MT3D: Insights into Pollution Dynamics and Management Strategies," Sustainability, MDPI, vol. 16(23), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10777-:d:1539699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mary H. Ward & Rena R. Jones & Jean D. Brender & Theo M. De Kok & Peter J. Weyer & Bernard T. Nolan & Cristina M. Villanueva & Simone G. Van Breda, 2018. "Drinking Water Nitrate and Human Health: An Updated Review," IJERPH, MDPI, vol. 15(7), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    2. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    3. Gonzalez, Rodrigo Barbone & Haas Ornelas, José Renato & Silva, Thiago Christiano, 2023. "The Value of Clean Water: Evidence from an Environmental Disaster," IDB Publications (Working Papers) 13273, Inter-American Development Bank.
    4. Angelo Earvin Sy Choi & Benny Marie B. Ensano & Jurng-Jae Yee, 2021. "Fuzzy Optimization for the Remediation of Ammonia: A Case Study Based on Electrochemical Oxidation," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    5. Naiara dos Santos & Dominic Clyde-Smith & Ying Qi & Fan Gao & Rosa Busquets & Luiza C. Campos, 2023. "A Study of Microfiber Phytoremediation in Vertical Hydroponics," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    6. Adrián Hernández-Fernández & Eduardo Iniesta-López & Yolanda Garrido & Ioannis A. Ieropoulos & Francisco J. Hernández-Fernández, 2023. "Microbial Fuel Cell Using a Novel Ionic-Liquid-Type Membrane-Cathode Assembly with Heterotrophic Anodic Denitrification for Slurry Treatment," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    7. Braamhaar, Dagmar J.M. & van der Lee, Jan & Bebe, Bockline O. & Oosting, Simon J., 2025. "From rural to urban: Exploring livestock farming practices in urbanizing landscapes," Agricultural Systems, Elsevier, vol. 225(C).
    8. Ibrahim Zaganjor & Thomas J. Luben & Tania A. Desrosiers & Alexander P. Keil & Lawrence S. Engel & Adrian M. Michalski & Suzan L. Carmichael & Wendy N. Nembhard & Gary M. Shaw & Jennita Reefhuis & Mah, 2020. "Maternal Exposure to Disinfection By-Products and Risk of Hypospadias in the National Birth Defects Prevention Study (2000–2005)," IJERPH, MDPI, vol. 17(24), pages 1-16, December.
    9. Chai, Yuan & J. Pannell, David & G. Pardey, Philip, 2023. "Nudging farmers to reduce water pollution from nitrogen fertilizer," Food Policy, Elsevier, vol. 120(C).
    10. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    11. GwanSeon Kim & Hoyeon Jeong & Jacob Manlove & Jun Ho Seok, 2025. "Impacts of organic farming on the nitrogen balance in agricultural land of OECD countries: Evidence from panel ARDL approach," Natural Resources Forum, Blackwell Publishing, vol. 49(3), pages 2937-2953, August.
    12. Peter Ravenscroft & Lucy Lytton, 2022. "Practical Manual on Groundwater Quality Monitoring," World Bank Publications - Reports 37196, The World Bank Group.
    13. Wenwen Feng & Chao Wang & Xiaohui Lei & Hao Wang & Xueliang Zhang, 2020. "Distribution of Nitrate Content in Groundwater and Evaluation of Potential Health Risks: A Case Study of Rural Areas in Northern China," IJERPH, MDPI, vol. 17(24), pages 1-14, December.
    14. Chunlin Hua & Zejun Li & Jeremy Clark, 2025. "Addressing Agricultural Nonpoint Source Pollution Incidentally via Collaboration with Larger Farms: Evidence from China," Working Papers in Economics 25/03, University of Canterbury, Department of Economics and Finance.
    15. Maria Fiore & Gea Oliveri Conti & Rosario Caltabiano & Antonino Buffone & Pietro Zuccarello & Livia Cormaci & Matteo Angelo Cannizzaro & Margherita Ferrante, 2019. "Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    16. Dauda Kamara & Doris Bah & Momodu Sesay & Anna Maruta & Bockarie Pompey Sesay & Bobson Derrick Fofanah & Ibrahim Franklyn Kamara & Joseph Sam Kanu & Sulaiman Lakoh & Bailah Molleh & Jamie Guth & Karun, 2022. "Evaluation of Drinking Water Quality and Bacterial Antibiotic Sensitivity in Wells and Standpipes at Household Water Points in Freetown, Sierra Leone," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    17. Marek Ruman & Dominika Dąbrowska, 2024. "Evaluation of Water Quality from the Zimny Sztok Spring (Southern Poland)—Preliminary Results," Sustainability, MDPI, vol. 16(12), pages 1-14, June.
    18. Gary G. Schwartz & Marilyn G. Klug, 2019. "Thyroid Cancer Incidence Rates in North Dakota are Associated with Land and Water Use," IJERPH, MDPI, vol. 16(20), pages 1-8, October.
    19. Callum Lowe & Johanna Kurscheid & Aparna Lal & Ross Sadler & Matthew Kelly & Donald Stewart & Budi Laksono & Salvador Amaral & Darren Gray, 2021. "Health Risk Assessment for Exposure to Nitrate in Drinking Water in Central Java, Indonesia," IJERPH, MDPI, vol. 18(5), pages 1-10, March.
    20. Ronald Tenywa & Timothy Omara & Gerald Kwikiriza & Christopher Angiro & Emmanuel Ntambi, 2024. "Spring Water Quality in a Flood-Prone Area of Kampala City, Uganda: Insights Furnished by Sanitary and Limnochemical Data," Resources, MDPI, vol. 13(10), pages 1-17, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10777-:d:1539699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.