IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p7011-d1129644.html
   My bibliography  Save this article

Rapid Detection of Changes in Image Textures of Carrots Caused by Freeze-Drying using Image Processing Techniques and Machine Learning Algorithms

Author

Listed:
  • Ewa Ropelewska

    (Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland)

  • Kadir Sabanci

    (Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey)

  • Muhammet Fatih Aslan

    (Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey)

  • Necati Çetin

    (Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey)

Abstract

The objective of this study was to evaluate the differences in texture parameters between freeze-dried and fresh carrot slices using image processing and artificial intelligence. Images of fresh and freeze-dried carrot slices were acquired using a digital camera. Texture parameters were extracted from slice images converted to individual color channels L , a , b , R , G , B , X , Y , and Z . A total of 1629 texture parameters, 181 for each of these color channels, were obtained. Models for the classification of freeze-dried and fresh carrot slices were created using various machine learning algorithms, based on attributes selected from a combined set of textures extracted from images in all color channels ( L , a , b , R , G , B , X , Y , and Z ). Using three different feature selection methods (Genetic Search, Ranker, and Best First), the 20 most effective texture parameters were determined for each method. The models with the highest classification accuracy obtained by applying various machine learning algorithms from Trees, Rules, Meta, Lazy, and Functions groups were determined. The classification successes obtained with the parameters selected from all three different feature selection algorithms were compared. Random Forest, Multi-class Classifier, Logistic and SMO machine learning algorithms achieved 100% accuracy in the classification performed with texture features obtained by each feature selection algorithm.

Suggested Citation

  • Ewa Ropelewska & Kadir Sabanci & Muhammet Fatih Aslan & Necati Çetin, 2023. "Rapid Detection of Changes in Image Textures of Carrots Caused by Freeze-Drying using Image Processing Techniques and Machine Learning Algorithms," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:7011-:d:1129644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/7011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/7011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewa Ropelewska & Xiang Cai & Zhan Zhang & Kadir Sabanci & Muhammet Fatih Aslan, 2022. "Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum ( Prunus domestica L.) Kernels," Agriculture, MDPI, vol. 12(2), pages 1-12, February.
    2. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.
    3. Kadir Sabanci & Muhammet Fatih Aslan & Vanya Slavova & Stefka Genova, 2022. "The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line," Agriculture, MDPI, vol. 12(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadir Sabanci & Muhammet Fatih Aslan & Vanya Slavova & Stefka Genova, 2022. "The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line," Agriculture, MDPI, vol. 12(10), pages 1-11, October.
    2. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Hamna Waheed & Noureen Zafar & Waseem Akram & Awais Manzoor & Abdullah Gani & Saif ul Islam, 2022. "Deep Learning Based Disease, Pest Pattern and Nutritional Deficiency Detection System for “Zingiberaceae” Crop," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    4. Goksu Tuysuzoglu & Kokten Ulas Birant & Derya Birant, 2023. "Rainfall Prediction Using an Ensemble Machine Learning Model Based on K-Stars," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    5. Ewa Ropelewska & Ahmed M. Rady & Nicholas J. Watson, 2023. "Apricot Stone Classification Using Image Analysis and Machine Learning," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:7011-:d:1129644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.