IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5834-d1109037.html
   My bibliography  Save this article

Occurrence and Distribution of Long-Term Variability in Precipitation Classes in the Source Region of the Yangtze River

Author

Listed:
  • Naveed Ahmed

    (Department of Civil Engineering, National University of Computer and Emerging Sciences, Foundation for Advancement of Science and Technology, Lahore 54000, Pakistan
    Key Laboratory of Mountain Surface Process and Ecological Regulations, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

  • Lianqi Zhu

    (College of Geography and Environmental Science, Henan University, Kaifeng 475001, China)

  • Genxu Wang

    (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China)

  • Oluwafemi E. Adeyeri

    (Low-Carbon and Climate Impact Research Centre (LCCIC), School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China)

  • Suraj Shah

    (College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shahid Ali

    (Department of Civil Engineering, National University of Computer and Emerging Sciences, Foundation for Advancement of Science and Technology, Lahore 54000, Pakistan)

  • Hero Marhaento

    (Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Sarfraz Munir

    (International Water Management Institute (IWMI), Lahore 54000, Pakistan)

Abstract

Various precipitation-related studies have been conducted on the Yangtze River. However, the topography and atmospheric circulation regime of the Source Region of the Yangtze River (SRYZ) differ from other basin parts. Along with natural uniqueness, precipitation constitutes over 60% of the direct discharge in the SRYZ, which depicts the decisive role of precipitation and a necessary study on the verge of climate change. The study evaluates the event distribution of long-term variability in precipitation classes in the SRYZ. The precipitation was classified into three precipitation classes: light precipitation (0–5 mm, 5–10 mm), moderate precipitation (10–15 mm, 15–20 mm, 20–25 mm), and heavy precipitation (>25 mm). The year 1998 was detected as a changing year using the Pettitt test in the precipitation time series; therefore, the time series was divided into three scenarios: Scenario-R (1961–2016), the pre-change point (Scenario-I; 1961–1998), and the post-change point (Scenario-II; 1999–2016). Observed annual precipitation amounts in the SRYZ during Scenario-R and Scenario-I significantly increased by 13.63 mm/decade and 48.8 mm/decade, respectively. The same increasing trend was evident in seasonal periods. On a daily scale, light precipitation (0–5 mm) covered most of the days during the entire period, with rainy days accounting for 83.50%, 84.5%, and 81.30%. These rainy days received up to 40%, 41%, and 38% of the annual precipitation during Scenario-R, Scenario-I, and Scenario-II, respectively. Consequently, these key findings of the study will be helpful in basin-scale water resources management.

Suggested Citation

  • Naveed Ahmed & Lianqi Zhu & Genxu Wang & Oluwafemi E. Adeyeri & Suraj Shah & Shahid Ali & Hero Marhaento & Sarfraz Munir, 2023. "Occurrence and Distribution of Long-Term Variability in Precipitation Classes in the Source Region of the Yangtze River," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5834-:d:1109037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoxiong Zheng & Simon Keith Allen & Anming Bao & Juan Antonio Ballesteros-Cánovas & Matthias Huss & Guoqing Zhang & Junli Li & Ye Yuan & Liangliang Jiang & Tao Yu & Wenfeng Chen & Markus Stoffel, 2021. "Increasing risk of glacial lake outburst floods from future Third Pole deglaciation," Nature Climate Change, Nature, vol. 11(5), pages 411-417, May.
    2. Urooj Saeed & Sajid Rashid Ahmad & Ghulam Mohey-ud-din & Hira Jannat Butt & Uzma Ashraf, 2022. "An Integrated Approach for Developing an Urban Livability Composite Index—A Cities’ Ranking Road Map to Achieve Urban Sustainability," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Munkhnasan Lamchin & Woo-Kyun Lee & Sonam Wangyel Wang, 2022. "Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole," Land, MDPI, vol. 11(12), pages 1-19, December.
    3. Hejie Wei & Yingying Gao & Qing Han & Ling Li & Xiaobin Dong & Mengxue Liu & Qingxiang Meng, 2022. "Quality Evaluation and Obstacle Identification of Human Settlements in the Qinghai–Tibet Plateau Based on Multi-Source Data," Land, MDPI, vol. 11(9), pages 1-21, September.
    4. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    5. Xiang Wang & Guo Chen & Xiaoai Dai & Jingjing Zhao & Xian Liu & Yu Gao & Junmin Zhang & Yongjun Chen & Xiaozhen Li & Wenyi Qin & Peng Wang, 2022. "Improved Process Management of Glacial Lake Outburst Flood Hazards by Integrating Modular Monitoring, Assessment, and Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2343-2358, May.
    6. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5834-:d:1109037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.