IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2796-d1057256.html
   My bibliography  Save this article

Overlooked Impacts of Urban Environments on the Air Quality in Naturally Ventilated Schools Amid the COVID-19 Pandemic

Author

Listed:
  • Kristijan Lavtižar

    (Faculty of Architecture, University of Ljubljana, Zoisova Street 12, 1000 Ljubljana, Slovenia)

  • Alenka Fikfak

    (Faculty of Architecture, University of Ljubljana, Zoisova Street 12, 1000 Ljubljana, Slovenia)

  • Rok Fink

    (Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia)

Abstract

The density, form, and dimensions of urban morphology are important for healthy living conditions in cities, especially if they are related to the climate and air pollution. Morphology and environmental conditions determine the relationship between open and built space, the width of street spaces, the aerodynamic characteristics of wind currents, albedo, and the retention of pollutants, as well as determining the radiative exchange with the atmosphere. Studies on the COVID-19 pandemic have focused on the assumption of a possible relationship between the spread of the SARS-CoV-2 virus and the presence and concentration of airborne particulate matter (PM 10 and PM 2.5 ). This paper focuses on the research of indoor air quality (IAQ) in two schools with naturally ventilated classrooms in Ljubljana, Slovenia. The presence of particulate matter (PM 2.5 and PM 10 ) and the concentration of CO 2 were studied, along with other microclimatic conditions, e.g., ambient temperature, relative humidity, air pressure, and wind conditions. These were compared and assessed via analysis of variance (ANOVA) and Duncan’s post hoc test. The main concern was to see how effective different ventilation strategies are, as well as how the openings in the classroom impact the concentrations of CO 2 relative to the concentrations of PM 2.5 and PM 10 particles as a side effect of these ventilation strategies. The inconsistent application of recommended COVID-19 ventilation strategies suggests that IAQ in naturally ventilated classrooms is highly determined by individual perceptions of indoor air quality. The results also suggest that the IAQ is significantly affected by the schools’ urban environment; however, this is not considered within the national COVID-19 ventilation recommendations. Future ventilation guidelines for pandemics should also include the urban environment as a risk factor for inadequate IAQ, instead of focusing solely on pathogen characteristics.

Suggested Citation

  • Kristijan Lavtižar & Alenka Fikfak & Rok Fink, 2023. "Overlooked Impacts of Urban Environments on the Air Quality in Naturally Ventilated Schools Amid the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2796-:d:1057256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Auer & Philipp Vohlidka & Christine Zettelmeier, 2020. "The Right Amount of Technology in School Buildings," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    2. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    3. Alberto Meiss & Héctor Jimeno-Merino & Irene Poza-Casado & Alfredo Llorente-Álvarez & Miguel Ángel Padilla-Marcos, 2021. "Indoor Air Quality in Naturally Ventilated Classrooms. Lessons Learned from a Case Study in a COVID-19 Scenario," Sustainability, MDPI, vol. 13(15), pages 1-12, July.
    4. Leonardo Setti & Fabrizio Passarini & Gianluigi De Gennaro & Pierluigi Barbieri & Alberto Pallavicini & Maurizio Ruscio & Prisco Piscitelli & Annamaria Colao & Alessandro Miani, 2020. "Searching for SARS-COV-2 on Particulate Matter: A Possible Early Indicator of COVID-19 Epidemic Recurrence," IJERPH, MDPI, vol. 17(9), pages 1-5, April.
    5. Sergio A. Chillon & Mikel Millan & Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Xabier Mendaza-Sagastizabal, 2021. "Natural Ventilation Characterization in a Classroom under Different Scenarios," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    2. Sergio A. Chillon & Mikel Millan & Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Xabier Mendaza-Sagastizabal, 2021. "Natural Ventilation Characterization in a Classroom under Different Scenarios," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    3. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    4. Junsik Park & Gurjoong Kim, 2022. "Social Efficiency of Public Transportation Policy in Response to COVID-19: Model Development and Application to Intercity Buses in Seoul Metropolitan Area," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    5. Birte Knobling & Gefion Franke & Lisa Beike & Timo Dickhuth & Johannes K. Knobloch, 2022. "Reading the Score of the Air—Change in Airborne Microbial Load in Contrast to Particulate Matter during Music Making," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
    6. Patrick Connerton & João Vicente de Assunção & Regina Maura de Miranda & Anne Dorothée Slovic & Pedro José Pérez-Martínez & Helena Ribeiro, 2020. "Air Quality during COVID-19 in Four Megacities: Lessons and Challenges for Public Health," IJERPH, MDPI, vol. 17(14), pages 1-24, July.
    7. Alberto Pivato & Gianni Formenton & Francesco Di Maria & Tatjana Baldovin & Irene Amoruso & Tiziano Bonato & Pamela Mancini & Giusy Bonanno Ferraro & Carolina Veneri & Marcello Iaconelli & Lucia Bonad, 2022. "SARS-CoV-2 in Atmospheric Particulate Matter: An Experimental Survey in the Province of Venice in Northern Italy," IJERPH, MDPI, vol. 19(15), pages 1-14, August.
    8. Henri Salmenjoki & Marko Korhonen & Antti Puisto & Ville Vuorinen & Mikko J Alava, 2021. "Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-12, November.
    9. Stephen Bok & Daniel E. Martin & Erik Acosta & Maria Lee & James Shum, 2021. "Validation of the COVID-19 Transmission Misinformation Scale and Conditional Indirect Negative Effects on Wearing a Mask in Public," IJERPH, MDPI, vol. 18(21), pages 1-23, October.
    10. Hiba Najini & Mutasim Nour & Sulaiman Al-Zuhair & Fadi Ghaith, 2020. "Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    11. C. Bambang Dwi Kuncoro & Cornelia Adristi & Moch Bilal Zaenal Asyikin, 2022. "Smart Wireless Particulate Matter Sensor Node for IoT-Based Strategic Monitoring Tool of Indoor COVID-19 Infection Risk via Airborne Transmission," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    12. Lukas Siebler & Maurizio Calandri & Torben Rathje & Konstantinos Stergiaropoulos, 2022. "Experimental Methods of Investigating Airborne Indoor Virus-Transmissions Adapted to Several Ventilation Measures," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    13. Marc Garbey & Guillaume Joerger & Shannon Furr, 2020. "A Systems Approach to Assess Transport and Diffusion of Hazardous Airborne Particles in a Large Surgical Suite: Potential Impacts on Viral Airborne Transmission," IJERPH, MDPI, vol. 17(15), pages 1-23, July.
    14. Sonja Jäckle & Elias Röger & Volker Dicken & Benjamin Geisler & Jakob Schumacher & Max Westphal, 2021. "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    15. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    16. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Sonia Cesteros-García & Roberto Alonso González-Lezcano, 2020. "Bad Air Can Also Kill: Residential Indoor Air Quality and Pollutant Exposure Risk during the COVID-19 Crisis," IJERPH, MDPI, vol. 17(19), pages 1-33, September.
    17. Tareq Hussein & Jakob Löndahl & Sara Thuresson & Malin Alsved & Afnan Al-Hunaiti & Kalle Saksela & Hazem Aqel & Heikki Junninen & Alexander Mahura & Markku Kulmala, 2021. "Indoor Model Simulation for COVID-19 Transport and Exposure," IJERPH, MDPI, vol. 18(6), pages 1-16, March.
    18. Chih-Pei Hu & Jen-Hsiung Cheng, 2022. "Challenges and Actions of IAQ under COVID-19: A Survey of Taiwanese People’s Perception of Epidemic Prevention and Indoor Places Certification," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    19. Joseph Ching & Mizuo Kajino, 2020. "Rethinking Air Quality and Climate Change after COVID-19," IJERPH, MDPI, vol. 17(14), pages 1-11, July.
    20. Thomas Harweg & Mathias Wagner & Frank Weichert, 2022. "Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario," IJERPH, MDPI, vol. 20(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2796-:d:1057256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.