IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1659-d1036181.html
   My bibliography  Save this article

The Relationship between the Built Environment and Climate Change: The Case of Turkish Provinces

Author

Listed:
  • Yasin Bektaş

    (Department of City and Regional Planning, Faculty of Architecture, Erciyes University, Kayseri 38280, Türkiye)

  • Adem Sakarya

    (Department of City and Regional Planning, Faculty of Architecture, Yildiz Technical University, Istanbul 34349, Türkiye)

Abstract

The relationship between the built environment and climate change has been discussed from many perspectives. This study examines the effect of the built environment on climate change indicators in Turkish provinces over the last 18 years, contributing to the literature on built environment analyses regarding both urban and rural areas, unlike other studies that have focused mostly on urban areas. The study discusses the changes in climate indicators using maps and analyzes the effects of the built environment on climate change using linear regression. The results indicate that provinces in Türkiye have experienced climate change effects such as increased annual mean temperature, maximum temperature, maximum precipitation, extreme weather events, and drought. These effects differed both in terms of geography and the subperiods over the examined period. The results also demonstrate the increase in the built environment to have a positive correlation with the increases in annual maximum temperature and the annual number of extreme weather events. The built environment in Türkiye increased 63% between 1990 and 2018, and the average number of extreme weather events per province increased from 0.3 to 8 over this same period. At the same time, the average annual mean temperature increased from 12.9 to 15.1 °C, the average maximum temperature went up from 24.6 to 25.8 °C, the average annual maximum precipitation increased from 125.6 to 157.7 mm, and the average number of dry months per year increased from 3.4 to 3.8.

Suggested Citation

  • Yasin Bektaş & Adem Sakarya, 2023. "The Relationship between the Built Environment and Climate Change: The Case of Turkish Provinces," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1659-:d:1036181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Mendelsohn & Ariel Dinar, 2009. "Land Use and Climate Change Interactions," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 309-332, September.
    2. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    3. Han Li & Yao Zhou & Yehua Dennis Wei, 2019. "Institutions, Extreme Weather, and Urbanization in the Greater Mekong Region," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 109(4), pages 1317-1340, July.
    4. Pengyan Zhang & Yanyan Li & Wenlong Jing & Dan Yang & Yu Zhang & Ying Liu & Wenliang Geng & Tianqi Rong & Jingwen Shao & Jiaxin Yang & Mingzhou Qin, 2020. "Comprehensive Assessment of the Effect of Urban Built-Up Land Expansion and Climate Change on Net Primary Productivity," Complexity, Hindawi, vol. 2020, pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afeef Abdurahman Choorapulakkal & Muhammed Gbolahan Madandola & Amina Al-Kandari & Raffaello Furlan & Goze Bayram & Hassan Abdelgadir Ahmed Mohamed, 2024. "The Resilience of the Built Environment to Flooding: The Case of Alappuzha District in the South Indian State of Kerala," Sustainability, MDPI, vol. 16(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    2. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    3. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    4. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    5. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    6. Pedcris M. Orencio & Masahiko Fujii, 2014. "A spatiotemporal approach for determining disaster-risk potential based on damage consequences of multiple hazard events," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 815-836, August.
    7. Hodjo, Manzamasso & Dalton, Timothy & Nakelse, Tebila, 2021. "Cereal Land Allocation Under Weather and Price Uncertainties in West Africa," 2021 Conference, August 17-31, 2021, Virtual 315177, International Association of Agricultural Economists.
    8. McFadden, Jonathan & Miranowski, John, 2014. "Climate Change Impacts on the Intensive and Extensive Margins of US Agricultural Land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170512, Agricultural and Applied Economics Association.
    9. Ziming Zhou & Zhiming Yu & Haitao Wu, 2022. "Climate Shocks, Household Resource Allocation, and Vulnerability to Poverty," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    10. Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).
    11. repec:isu:genstf:201501010800005635 is not listed on IDEAS
    12. Odozi, John C., 2015. "The economic impact of climate change on small farms in Nigeria: A Ricardian approach," MPRA Paper 68188, University Library of Munich, Germany.
    13. Hao Guo & Anming Bao & Tie Liu & Felix Ndayisaba & Daming He & Alishir Kurban & Philippe De Maeyer, 2017. "Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product," Sustainability, MDPI, vol. 9(6), pages 1-21, May.
    14. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    15. Muhammad Ashraf & Jayant Routray & Muhammad Saeed, 2014. "Determinants of farmers’ choice of coping and adaptation measures to the drought hazard in northwest Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1451-1473, September.
    16. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    17. Yadav, Alka & Das, Sourish & Bakar, K. Shuvo & Chakraborti, Anirban, 2023. "Understanding the complex dynamics of climate change in south-west Australia using Machine Learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    18. Yan, Dan & Schneider, Uwe A. & Schmid, Erwin & Huang, He Qing & Pan, Lihu & Dilly, Oliver, 2013. "Interactions between land use change, regional development, and climate change in the Poyang Lake district from 1985 to 2035," Agricultural Systems, Elsevier, vol. 119(C), pages 10-21.
    19. Erfu Dai & Le Yin & Yahui Wang & Liang Ma & Miao Tong, 2020. "Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    20. Sabrina Auci & Andrea Pronti, 2020. "Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous Switching Analysis on Italian Farms’ Land Productivity," SEEDS Working Papers 1220, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2020.
    21. Xiaomin Guo & Chuanglin Fang, 2021. "Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province," Land, MDPI, vol. 10(12), pages 1-18, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1659-:d:1036181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.