IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9909-d1176317.html
   My bibliography  Save this article

Modernizing Medical Waste Management: Unleashing the Power of the Internet of Things (IoT)

Author

Listed:
  • Nurul Hamizah Mohamed

    (Centre of Digital Engineering Manufacturing, Cranfield University, Cranfield MK43 0AL, UK)

  • Samir Khan

    (Centre of Digital Engineering Manufacturing, Cranfield University, Cranfield MK43 0AL, UK)

  • Sandeep Jagtap

    (Sustainable Manufacturing Engineering Centre, Cranfield University, Cranfield MK43 0AL, UK)

Abstract

The rapid technological advancements of modern times have brought about the need for an innovative and contemporary approach to medical waste management procedures. This arises from the inadequacy of conventional manual techniques in ensuring the safety of employees and the environment from infections. The increasing amount of waste produced each day can exacerbate the situation if no action is taken to address the current issue. This article presents a systematic review of the use of the Internet of Things (IoT) in medical waste management, utilizing the PRISMA approach. The adoption of the IoT in waste and medical waste monitoring is analyzed for its potential to enhance the overall waste monitoring procedure and contribute to achieving net-zero goals. Empirical evidence from studies conducted in the last five years has revealed the benefits of employing waste bin sensors as a digital surveillance tool for real-time waste status monitoring. While a few researchers have proposed the use of the IoT in medical waste monitoring, the application is currently limited to either monitoring storage facilities, waste transportation, or disposal processes, specifically. These limitations are discussed to understand the barriers that hinder further development. Among the selected analyzed studies are published articles and conference papers that offer solutions for addressing waste management issues and facilitating further development. This paper also aims to identify IoT technologies for monitoring waste and medical waste management. The digitalization of medical waste can ensure that the entire monitoring procedure is conducted directly and in real time. The collected data can be easily shared, and the condition of the waste can be updated periodically.

Suggested Citation

  • Nurul Hamizah Mohamed & Samir Khan & Sandeep Jagtap, 2023. "Modernizing Medical Waste Management: Unleashing the Power of the Internet of Things (IoT)," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9909-:d:1176317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheol-Woo Yoon & Min-Jung Kim & Yoon-Su Park & Tae-Wan Jeon & Min-Yong Lee, 2022. "A Review of Medical Waste Management Systems in the Republic of Korea for Hospital and Medical Waste Generated from the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    2. Ayaz Hussain & Umar Draz & Tariq Ali & Saman Tariq & Muhammad Irfan & Adam Glowacz & Jose Alfonso Antonino Daviu & Sana Yasin & Saifur Rahman, 2020. "Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach," Energies, MDPI, vol. 13(15), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Jagtap & Mohamed Afy-Shararah & Rakesh Raut & Sumit Gupta, 2023. "Advancing Sustainability and Efficiency in Supply Chains: Insights from the Special Issue on Sustainable Supply Chain and Lean Manufacturing," Sustainability, MDPI, vol. 15(20), pages 1-2, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sehrish Munawar Cheema & Abdul Hannan & Ivan Miguel Pires, 2022. "Smart Waste Management and Classification Systems Using Cutting Edge Approach," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    2. Vladimir Simic & Ali Ebadi Torkayesh & Abtin Ijadi Maghsoodi, 2023. "Locating a disinfection facility for hazardous healthcare waste in the COVID-19 era: a novel approach based on Fermatean fuzzy ITARA-MARCOS and random forest recursive feature elimination algorithm," Annals of Operations Research, Springer, vol. 328(1), pages 1105-1150, September.
    3. Shaik Vaseem Akram & Rajesh Singh & Anita Gehlot & Mamoon Rashid & Ahmed Saeed AlGhamdi & Sultan S. Alshamrani & Deepak Prashar, 2021. "Role of Wireless Aided Technologies in the Solid Waste Management: A Comprehensive Review," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    4. Abdul Rehman & Muhammad Ahmed Qureshi & Tariq Ali & Muhammad Irfan & Saima Abdullah & Sana Yasin & Umar Draz & Adam Glowacz & Grzegorz Nowakowski & Abdullah Alghamdi & Abdulaziz A. Alsulami & Mariusz , 2021. "Smart Fire Detection and Deterrent System for Human Savior by Using Internet of Things (IoT)," Energies, MDPI, vol. 14(17), pages 1-30, September.
    5. Çelik, Sefa & Peker, İskender & Gök-Kısa, A. Cansu & Büyüközkan, Gülçin, 2023. "Multi-criteria evaluation of medical waste management process under intuitionistic fuzzy environment: A case study on hospitals in Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    6. Mesfer Al Duhayyim & Heba G. Mohamed & Mohammed Aljebreen & Mohamed K. Nour & Abdullah Mohamed & Amgad Atta Abdelmageed & Ishfaq Yaseen & Gouse Pasha Mohammed, 2022. "Artificial Ecosystem-Based Optimization with an Improved Deep Learning Model for IoT-Assisted Sustainable Waste Management," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    7. Jae Hong Park & Phil Goo Kang & Eunseok Kim & Tae Woo Kim & Gahee Kim & Heejeong Seok & Jinwon Seo, 2021. "Introduction of IoT-Based Surrogate Parameters in the Ex-Post Countermeasure of Industrial Sectors in Integrated Permit Policy," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    8. Sabbir Ahmed & Sameera Mubarak & Jia Tina Du & Santoso Wibowo, 2022. "Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    9. Abdallah Namoun & Ali Tufail & Muhammad Yasar Khan & Ahmed Alrehaili & Toqeer Ali Syed & Oussama BenRhouma, 2022. "Solid Waste Generation and Disposal Using Machine Learning Approaches: A Survey of Solutions and Challenges," Sustainability, MDPI, vol. 14(20), pages 1-32, October.
    10. Aianna Rios Magalhães Véras e Silva & Bruna de Freitas Iwata & Maria do Socorro Ferreira dos Santos & José Machado Moita Neto, 2023. "Impacts and Regulations of Healthcare Solid Waste Management during the COVID-19 Pandemic: A Systematic Review," Sustainability, MDPI, vol. 15(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9909-:d:1176317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.