IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8625-d1155952.html
   My bibliography  Save this article

Experimental Testing of a Water-to-Water Heat Pump with and without IHX by Using Refrigerants R1234yf and R1234ze(E)

Author

Listed:
  • Mladen Bošnjaković

    (Technical Department, University of Slavonski Brod, Trg Ivane Brlić Mažuranić 2, 35000 Slavonski Brod, Croatia)

  • Robert Santa

    (Department of Mechanical Engineering and Material Sciences, Institute of Engineering Sciences, University of Dunaújváros, Tancsics Mihaly 1//A, 2400 Dunaujvaros, Hungary)

  • Marko Katinić

    (Mechanical Engineering Faculty, University of Slavonski Brod, Trg Ivane Brlić Mažuranić 2, 35000 Slavonski Brod, Croatia)

Abstract

The use of heat pumps is increasing worldwide, and knowledge of their properties is becoming more and more important. Although numerous tests regarding heat pumps have been performed, due to the large number of influencing variables, the entire range of input parameters is not covered, and there is no overall picture regarding the range of the coefficient of performance (COP) of heat pumps and their output parameters. This study extends existing research and provides a much more detailed comparison of results for the application of R1234yf and R1234ze(E) refrigerants, including the pressure drop across the evaporator, condenser, and internal heat exchanger (IHX). The appropriate mathematical model for the selected components was defined and verified experimentally. A total of 60 series of measurements were performed at different evaporating and condensing temperatures. The deviation of the numerical simulation results from the experimentally determined results was up to 7.4% for cooling capacity, 8.1% for heating capacity, 7.2% for COP and 6.8% for compressor energy consumption. This study shows that COP increases from 4.77% to 10.73% for R1234ze(E) compared to R1234yf. The use of an IHX in the thermal cycle further increases COP for both refrigerants between 2.61% and 4.99%.

Suggested Citation

  • Mladen Bošnjaković & Robert Santa & Marko Katinić, 2023. "Experimental Testing of a Water-to-Water Heat Pump with and without IHX by Using Refrigerants R1234yf and R1234ze(E)," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8625-:d:1155952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mladen Bošnjaković & Simon Muhič & Ante Čikić & Marija Živić, 2019. "How Big Is an Error in the Analytical Calculation of Annular Fin Efficiency?," Energies, MDPI, vol. 12(9), pages 1-18, May.
    2. Heng Chen & Yungang Wang & Qinxin Zhao & Haidong Ma & Yuxin Li & Zhongya Chen, 2014. "Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks," Energies, MDPI, vol. 7(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mateusz Marcinkowski & Dawid Taler, 2021. "Calculating the Efficiency of Complex-Shaped Fins," Energies, MDPI, vol. 14(3), pages 1-14, January.
    2. Pradhyumn Bhale & Mrinal Kaushik & Jane-Sunn Liaw & Chi-Chuan Wang, 2019. "Airside Performance of H-Type Finned Tube Banks with Surface Modifications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    3. Xiaocheng Du & Weiteng Li & Xirong Zhang & Jingrong Chen & Tingyu Chen & Dong Yang, 2022. "Experimental Research on the Flow and Heat Transfer Characteristics of Subcritical and Supercritical Water in the Vertical Upward Smooth and Rifled Tubes," Energies, MDPI, vol. 15(21), pages 1-22, October.
    4. Rajesh Ravi & Senthilkumar Pachamuthu, 2018. "Design and Development of Innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an Engine WHR and Its Impact on Exhaust Emissions," Energies, MDPI, vol. 11(10), pages 1-19, October.
    5. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    6. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    7. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    8. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.
    9. Seok Min Choi & Jun Su Park & Ho-Seong Sohn & Seon Ho Kim & Hyung Hee Cho, 2016. "Thermal Characteristics of Tube Bundles in Ultra-Supercritical Boilers," Energies, MDPI, vol. 9(10), pages 1-14, September.
    10. Shehryar Ishaque & Man-Hoe Kim, 2019. "Seasonal Performance Investigation for Residential Heat Pump System with Different Outdoor Heat Exchanger Designs," Energies, MDPI, vol. 12(24), pages 1-22, December.
    11. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.

    More about this item

    Keywords

    heat pump; R1234ze(E); R1234yf; internal heat exchanger; COP;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8625-:d:1155952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.