IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5677-d810921.html
   My bibliography  Save this article

Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times

Author

Listed:
  • Dong Zhu

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Yanbo Yang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Tiancai Ma

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

The aged stack results in resistance growth and power decline. At present, most of the analyses of resistance growth are qualitative or identified by complex mechanism models. For more effective identification, the distribution of relaxation times (DRT) method is applied to the aging analysis of the stack. The individual polarization process of the stack corresponding to each DRT peak is determined by appropriate experimental conditions and the impedance of the individual polarization process is characterized by the peak area. The three DRT peaks from low frequency to high frequency are identified as the mass transport, the charge transfer of oxygen reduction reactions (ORRs), and the proton transport in the cathode catalyst layer (CCL) and anode side. The stack’s voltage recession rate is 15% at the rated current density of 800 mA cm −2 after running for 2000 h in the driving cycle. Mass transport is the main reason accounting for 66.1% of the resistance growth. The charge transfer resistance growth cannot be ignored, accounting for 30.23%. The resistance growth obtained by the DRT can quickly and accurately identify the main reason for stack decline and therefore promises to become an important diagnostic tool in relation to aging.

Suggested Citation

  • Dong Zhu & Yanbo Yang & Tiancai Ma, 2022. "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5677-:d:810921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    2. Dongxu Guo & Geng Yang & Guangjin Zhao & Mengchao Yi & Xuning Feng & Xuebing Han & Languang Lu & Minggao Ouyang, 2020. "Determination of the Differential Capacity of Lithium-Ion Batteries by the Deconvolution of Electrochemical Impedance Spectra," Energies, MDPI, vol. 13(4), pages 1-14, February.
    3. Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
    4. Ozden, Adnan & Shahgaldi, Samaneh & Li, Xianguo & Hamdullahpur, Feridun, 2019. "The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles," Applied Energy, Elsevier, vol. 238(C), pages 1048-1059.
    5. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiming Zhang & Jun Zhang & Liang Shi & Tong Zhang, 2022. "A Study of Contact Pressure with Thermo-Mechanical Coupled Action for a Full-Dimensional PEMFC Stack," Sustainability, MDPI, vol. 14(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    2. Ren, Peng & Meng, Yining & Pei, Pucheng & Fu, Xi & Chen, Dongfang & Li, Yuehua & Zhu, Zijing & Zhang, Lu & Wang, Mingkai, 2023. "Rapid synchronous state-of-health diagnosis of membrane electrode assemblies in fuel cell stacks," Applied Energy, Elsevier, vol. 330(PA).
    3. Zeng, Tao & Zhang, Caizhi & Hao, Dong & Cao, Dongpu & Chen, Jiawei & Chen, Jinrui & Li, Jin, 2020. "Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles," Energy, Elsevier, vol. 208(C).
    4. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    5. Yuan, Hao & Dai, Haifeng & Ming, Pingwen & Wang, Xueyuan & Wei, Xuezhe, 2021. "Quantitative analysis of internal polarization dynamics for polymer electrolyte membrane fuel cell by distribution of relaxation times of impedance," Applied Energy, Elsevier, vol. 303(C).
    6. Yuan, Hao & Dai, Haifeng & Wei, Xuezhe & Ming, Pingwen, 2020. "A novel model-based internal state observer of a fuel cell system for electric vehicles using improved Kalman filter approach," Applied Energy, Elsevier, vol. 268(C).
    7. Zhang, Qian & Schulze, Mathias & Gazdzicki, Pawel & Friedrich, K. Andreas, 2021. "Comparison of different performance recovery procedures for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    8. Zeng, Tao & Zhang, Caizhi & Zhou, Anjian & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Chen, Jinrui & Foley, Aoife M., 2021. "Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control," Energy, Elsevier, vol. 230(C).
    9. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    10. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    11. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    12. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    13. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    14. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    15. Zhou, Xuejun & Tang, Sheng & Yin, Yan & Sun, Shuihui & Qiao, Jinli, 2016. "Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 459-467.
    16. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    17. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    18. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    19. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    20. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5677-:d:810921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.