IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5412-d806485.html
   My bibliography  Save this article

A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use?

Author

Listed:
  • Azar Niknam

    (Department of Industrial Engineering, Yazd University, Yazd 89158-18411, Iran)

  • Hasan Khademi Zare

    (Department of Industrial Engineering, Yazd University, Yazd 89158-18411, Iran)

  • Hassan Hosseininasab

    (Department of Industrial Engineering, Yazd University, Yazd 89158-18411, Iran)

  • Ali Mostafaeipour

    (Department of Industrial Engineering, Yazd University, Yazd 89158-18411, Iran)

  • Manuel Herrera

    (Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK)

Abstract

The challenge for city authorities goes beyond managing growing cities, since as cities develop, their exposure to climate change effects also increases. In this scenario, urban water supply is under unprecedented pressure, and the sustainable management of the water demand, in terms of practices including economic, social, environmental, production, and other fields, is becoming a must for utility managers and policy makers. To help tackle these challenges, this paper presents a well-timed review of predictive methods for short-term water demand. For this purpose, over 100 articles were selected from the articles published in water demand forecasting from 2010 to 2021 and classified upon the methods they use. In principle, the results show that traditional time series methods and artificial neural networks are among the most widely used methods in the literature, used in 25% and 20% of the articles in this review. However, the ultimate goal of the current work goes further, providing a comprehensive guideline for engineers and practitioners on selecting a forecasting method to use among the plethora of available options. The overall document results in an innovative reference tool, ready to support demand-informed decision making for disruptive technologies such as those coming from the Internet of Things and cyber–physical systems, as well as from the use of digital twin models of water infrastructure. On top of this, this paper includes a thorough review of how sustainable management objectives have evolved in a new era of technological developments, transforming data acquisition and treatment.

Suggested Citation

  • Azar Niknam & Hasan Khademi Zare & Hassan Hosseininasab & Ali Mostafaeipour & Manuel Herrera, 2022. "A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use?," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5412-:d:806485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Al-Zahrani & Amin Abo-Monasar, 2015. "Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3651-3662, August.
    2. Wa’el A. Hussien & Fayyaz A. Memon & Dragan A. Savic, 2016. "Assessing and Modelling the Influence of Household Characteristics on Per Capita Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2931-2955, July.
    3. Jon Franczyk & Heejun Chang, 2009. "Spatial Analysis of Water Use in Oregon, USA, 1985–2005," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 755-774, March.
    4. Ashu Jain & Ashish Kumar Varshney & Umesh Chandra Joshi, 2001. "Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 299-321, October.
    5. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    6. Md Mahmudul Haque & Amaury Souza & Ataur Rahman, 2017. "Water Demand Modelling Using Independent Component Regression Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 299-312, January.
    7. Diego Maria André & José Carvalho, 2014. "Spatial Determinants of Urban Residential Water Demand in Fortaleza, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2401-2414, July.
    8. Kang-Min Koo & Kuk-Heon Han & Kyung-Soo Jun & Gyumin Lee & Jung-Sik Kim & Kyung-Taek Yum, 2021. "Performance Assessment for Short-Term Water Demand Forecasting Models on Distinctive Water Uses in Korea," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsu, Chia-Chuan & Lin, Yu-Pin, 2024. "Incorporating long-term numerical weather forecasts to quantify dynamic vulnerability of irrigation supply system: A case study of Shihmen Reservoir in Taiwan," Agricultural Water Management, Elsevier, vol. 306(C).
    2. Ibrahim Khoury & Sophia Ghanimeh & Dima Jawad & Maya Atieh, 2023. "Synergetic Water Demand and Sustainable Supply Strategies in GCC Countries: Data-driven Recommendations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1947-1963, March.
    3. Jorge Alejandro Silva, 2022. "Implementation and Integration of Sustainability in the Water Industry: A Systematic Literature Review," Sustainability, MDPI, vol. 14(23), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Her Shih & Ching-Hsien Liao & Ting-Wei Wu & Huan-Shuo Chang & Ming-Hung Shih, 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    2. Roberta Padulano & Giuseppe Giudice, 2019. "Pattern Detection and Scaling Laws of Daily Water Demand by SOM: an Application to the WDN of Naples, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 739-755, January.
    3. Jorge Alejandro Silva, 2022. "Implementation and Integration of Sustainability in the Water Industry: A Systematic Literature Review," Sustainability, MDPI, vol. 14(23), pages 1-28, November.
    4. Edward Gage & David Cooper, 2015. "The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3877-3890, August.
    5. Roberto Balado‐Naves & María A. García‐Valiñas & David Roibás Alonso, 2025. "Assessing the efficiency of residential water demand: The role of information," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 47(2), pages 556-585, May.
    6. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    7. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    8. Kanhua Yu & Lili Liu & Zhe Chen, 2021. "An Improved Slime Mould Algorithm for Demand Estimation of Urban Water Resources," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
    9. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
    10. Salah L. Zubaidi & Sadik K. Gharghan & Jayne Dooley & Rafid M. Alkhaddar & Mawada Abdellatif, 2018. "Short-Term Urban Water Demand Prediction Considering Weather Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4527-4542, November.
    11. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    12. Bich-Ngoc, Nguyen & Prevedello, Cédric & Cools, Mario & Teller, Jacques, 2022. "Factors influencing residential water consumption in Wallonia, Belgium," Utilities Policy, Elsevier, vol. 74(C).
    13. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
    14. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    15. Ukasha Ramli, 2021. "Social Norms Based Eco-Feedback for Household Water Consumption," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    16. Sarah Rehkamp & James Chandler Zachary, 2024. "Estimating U.S. Subnational Freshwater Withdrawals by Water Use Category from 1995 to 2021," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5615-5628, November.
    17. Han Zhou & Jiejun Huang & Yanbin Yuan, 2017. "Analysis of the Spatial Characteristics of the Water Usage Patterns Based on ESDA-GIS: An Example of Hubei Province, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1503-1516, March.
    18. Sankhadeep Chatterjee & Sarbartha Sarkar & Nilanjan Dey & Soumya Sen, 2018. "Non-Dominated Sorting Genetic Algorithm-II-Induced Neural-Supported Prediction of Water Quality with Stability Analysis," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-20, June.
    19. Almando Morain & Nivedita Ilangovan & Christopher Delhom & Aavudai Anandhi, 2024. "Artificial Intelligence for Water Consumption Assessment: State of the Art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3113-3134, July.
    20. Thomas M Fullerton Jr & Arturo Elias, 2004. "Short-Term Water Consumption Dynamics in El Paso, Texas," Others 0410005, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5412-:d:806485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.