IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5326-d804498.html
   My bibliography  Save this article

Assessment of Emissions and Energy Consumption for Construction Machinery in Earthwork Activities by Incorporating Real-World Measurement and Discrete-Event Simulation

Author

Listed:
  • Beichuan Hong

    (Department of Machine Design, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

  • Lin Lü

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract

Earthwork, an essential activity in most construction projects, consumes large quantities of fossil fuel and produces substantial air pollution with adverse environmental impacts. To achieve more sustainable construction processes, novel methodologies to evaluate and improve the performance of earthwork operations are required. This study quantifies the real-world emissions and fuel consumption of construction equipment within an earthwork project in China. Two wheel loaders and two dump trucks are examined through on-board measurements and in-lab engine tests. The duty cycles of construction equipment are categorized with respect to their power efficiency and working patterns. Moreover, the power-specific and time-based emission factors for these duty cycles are computed and compared with relevant legislative emission limits. Significant emission variations among different duty cycles were found, and the real-world emission measurements exceeded the results from the in-lab test required for emission certification. In addition, a discrete-event simulation (DES) framework was developed, validated, and integrated with the computed emission factors to analyze the environmental and energy impacts of the earthwork project. Furthermore, the equipment fleet schedule was optimized in the DES framework to reduce greenhouse gas emissions and fuel consumption by 8.1% and 6.6%, respectively.

Suggested Citation

  • Beichuan Hong & Lin Lü, 2022. "Assessment of Emissions and Energy Consumption for Construction Machinery in Earthwork Activities by Incorporating Real-World Measurement and Discrete-Event Simulation," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5326-:d:804498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    2. Daniele Beltrami & Paolo Iora & Laura Tribioli & Stefano Uberti, 2021. "Electrification of Compact Off-Highway Vehicles—Overview of the Current State of the Art and Trends," Energies, MDPI, vol. 14(17), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changchun Li & Sen Wang, 2022. "Digital Optimization, Green R&D Collaboration, and Green Technological Innovation in Manufacturing Enterprises," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    2. McCaffery, Cavan & Yang, Jiacheng & Karavalakis, Georgios & Yoon, Seungju & Johnson, Kent C. & Miller, J. Wayne & Durbin, Thomas D., 2022. "Evaluation of small off-road diesel engine emissions and aftertreatment systems," Energy, Elsevier, vol. 251(C).
    3. Laura Tribioli & Manfredi Villani, 2022. "Electrified Powertrains for a Sustainable Mobility: Topologies, Design and Integrated Energy Management Strategies," Energies, MDPI, vol. 15(9), pages 1-2, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5326-:d:804498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.