IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16696-d1002258.html
   My bibliography  Save this article

Dimensionality-Transformed Remote Sensing Data Application to Map Soil Salinization at Lowlands of the Syr Darya River

Author

Listed:
  • Kanat Samarkhanov

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Jilili Abuduwaili

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Alim Samat

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Yongxiao Ge

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Wen Liu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Long Ma

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Zhassulan Smanov

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    U.U.Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, Almaty 050060, Kazakhstan)

  • Gabit Adamin

    (U.U.Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, Almaty 050060, Kazakhstan
    These authors contributed equally to this work.)

  • Azamat Yershibul

    (U.U.Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, Almaty 050060, Kazakhstan
    These authors contributed equally to this work.)

  • Zhassulan Sadykov

    (Social Work and Tourism Department, Faculty of Applied Sciences and the Department of Postgraduate Education, Esil University, Nur-Sultan 010005, Kazakhstan
    These authors contributed equally to this work.)

Abstract

The problem of saving soil resources and their reclamation measures under current climate change conditions attracts the world community’s close attention. It is relevant in the Syr Darya River’s lowlands, where the secondary soil salinization processes have intensified. The demand for robust methods to assess soil salinity is high, and the primary purpose of this study was to develop a quantitative analysis method for soil salinity estimation. We found a correspondence between the sum of salts in a topsoil layer to the Landsat 8 data in the Tasseled cap transformation of the image values. After testing several methods, we built a prediction model. The K-nearest neighborhood (KNN) model with a coefficient of determination equal to 0.96 using selected predictors proved to be the most appropriate for soil salinity assessment. We also performed a quantitative assessment of soil salinity. A significant increase in a salt-affected area and the mean soil sum expressing an intensification of secondary soil salinization from 2018 to 2021 was found. The increasing temperature values, decreasing soil moisture, and agricultural use affect the extension of salt-affected ground areas in the study area. Thus, the soil moisture trend in the Qazaly irrigation zone is negative and declining, with the highest peaks in early spring. The maximum temperature has a mean value of 15.6 °C (minimum = −15.1 °C, maximum = 37.4 °C) with an increasing trend. These parameters are evidence of climate change that also affects soil salinization. PCA transformation of the Landsat-8 satellite images helped to remove redundant spectral information from multiband datasets and map soil salinity more precisely. This approach simultaneously extends mapping opportunities involving visible and invisible bands and results in a smaller dataset.

Suggested Citation

  • Kanat Samarkhanov & Jilili Abuduwaili & Alim Samat & Yongxiao Ge & Wen Liu & Long Ma & Zhassulan Smanov & Gabit Adamin & Azamat Yershibul & Zhassulan Sadykov, 2022. "Dimensionality-Transformed Remote Sensing Data Application to Map Soil Salinization at Lowlands of the Syr Darya River," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16696-:d:1002258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. H. Niedrist & R. Psenner & R. Sommaruga, 2018. "Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake," Climatic Change, Springer, vol. 151(3), pages 473-490, December.
    2. Derek G Groenendyk & Ty PA Ferré & Kelly R Thorp & Amy K Rice, 2015. "Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odunayo David Adeniyi & Hauwa Bature & Michael Mearker, 2024. "A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas," Land, MDPI, vol. 13(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monteleone, Beatrice & Borzí, Iolanda & Bonaccorso, Brunella & Martina, Mario, 2022. "Developing stage-specific drought vulnerability curves for maize: The case study of the Po River basin," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Federica Ghilardi & Andrea Virano & Marco Prandi & Enrico Borgogno-Mondino, 2023. "Zonation of a Viticultural Territorial Context in Piemonte (NW Italy) to Support Terroir Identification: The Role of Pedological, Topographical and Climatic Factors," Land, MDPI, vol. 12(3), pages 1-24, March.
    3. Aida Skersiene & Alvyra Slepetiene & Vaclovas Stukonis & Egle Norkeviciene, 2023. "Accumulation of SOC and Carbon Fractions in Different Age Red Fescue Permanent Swards," Land, MDPI, vol. 12(5), pages 1-13, May.
    4. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16696-:d:1002258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.