IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15755-d985124.html
   My bibliography  Save this article

Experimental Performance of Single-Slope Basin Solar Still Coupled with a Humidification–Dehumidification Cycle

Author

Listed:
  • Ahmed Ghazy

    (Department of Mechanical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Raid Alrowais

    (Department of Civil Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

Abstract

Despite their low distillate yield, single-slope basin solar stills incorporate a simple and cheap technique to secure potable water in arid and rural areas away from fresh water resources and the power grid. Nevertheless, recovering a portion of the inevitable thermal losses from the still will significantly contribute to enhancing its daily distillate productivity and thermal performance. In this manuscript, the latent heat of condensation in single-slope basin solar still was partially recovered and utilized as the thermal energy source for an auxiliary humidification–dehumidification (HDH) distillation cycle. The thermal performance of the resultant SS-HDH distiller was experimentally tested side by side with a separate single-slope basin still of the same basin area. The results showed an increase of about 2 L/m 2 in the daily distillate production of the SS-HDH distiller over that of the conventional single-slope basin still. In addition, the thermal efficiency of the SS-HDH distiller was 57% greater than that of the conventional single-slope basin still.

Suggested Citation

  • Ahmed Ghazy & Raid Alrowais, 2022. "Experimental Performance of Single-Slope Basin Solar Still Coupled with a Humidification–Dehumidification Cycle," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15755-:d:985124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sahoo, B.B. & Sahoo, N. & Mahanta, P. & Borbora, L. & Kalita, P. & Saha, U.K., 2008. "Performance assessment of a solar still using blackened surface and thermocol insulation," Renewable Energy, Elsevier, vol. 33(7), pages 1703-1708.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadl A. Essa & AbdelKader Abdullah & Hasan Sh. Majdi & Ali Basem & Hayder A. Dhahad & Zakaria M. Omara & Suha A. Mohammed & Wissam H. Alawee & Amged Al Ezzi & Talal Yusaf, 2022. "Parameters Affecting the Efficiency of Solar Stills—Recent Review," Sustainability, MDPI, vol. 14(17), pages 1-58, August.
    2. Maddah, Hisham A. & Bassyouni, M. & Abdel-Aziz, M.H. & Zoromba, M. Sh & Al-Hossainy, A.F., 2020. "Performance estimation of a mini-passive solar still via machine learning," Renewable Energy, Elsevier, vol. 162(C), pages 489-503.
    3. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    4. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    5. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    6. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    7. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15755-:d:985124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.