IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15143-d973524.html
   My bibliography  Save this article

Numerical Investigation of the Ribs’ Shape, Spacing, and Height on Heat Transfer Performance of Turbulent Flow in a Flat Plate Heat Exchanger

Author

Listed:
  • Ahmed Saad Soliman

    (Mechanical Power Engineering Department, Mansoura University, El-Mansoura 35516, Egypt)

  • Li Xu

    (School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China)

  • Junguo Dong

    (School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China)

  • Ping Cheng

    (School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China)

Abstract

This paper presents a numerical study of detailed heat transfer and flow field characteristics in a flat plate heat exchanger with different types of ribs (rectangular and triangular) with different heights (H: 2.5, 5, 7.5, and 10 mm) and spacings (S: 75, 95, 128, and 195 mm). A comprehensive numerical model was established and validated with experimental data in the literature, resulting in good agreement. The effects of the height, spacing, and shape of the ribs in addition to thermal-hydraulic parameters were investigated over two values of the Reynolds number (9880–3210). The results concluded that the highest values of the thermal-hydraulic parameters are 1.62 and 1.84 for the hot and cold air sides, in the rectangular ribs, with a thickness, height, and spacing of 75 mm, and 95 mm, respectively. It is worth mentioning that the rectangular ribs have the maximum value of thermal performance at the high and low values of the Reynolds number of turbulent flows. The present design can be used in waste heat recovery systems.

Suggested Citation

  • Ahmed Saad Soliman & Li Xu & Junguo Dong & Ping Cheng, 2022. "Numerical Investigation of the Ribs’ Shape, Spacing, and Height on Heat Transfer Performance of Turbulent Flow in a Flat Plate Heat Exchanger," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15143-:d:973524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Soheil Mousavi Ajarostaghi & Mohammad Zaboli & Hossein Javadi & Borja Badenes & Javier F. Urchueguia, 2022. "A Review of Recent Passive Heat Transfer Enhancement Methods," Energies, MDPI, vol. 15(3), pages 1-60, January.
    2. Oronzio Manca & Sergio Nardini & Daniele Ricci, 2011. "Numerical Analysis of Water Forced Convection in Channels with Differently Shaped Transverse Ribs," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchen Na & Yingxue Yao & Jianjun Du, 2023. "Thermal Performance of a Novel Non-Tubular Absorber with Extended Internal Surfaces for Concentrated Solar Power Receivers," Energies, MDPI, vol. 16(13), pages 1-21, June.
    2. Pasu Poonpakdee & Boonsong Samutpraphut & Chinaruk Thianpong & Suriya Chokphoemphun & Smith Eiamsa-ard & Naoki Maruyama & Masafumi Hirota, 2022. "Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms," Energies, MDPI, vol. 15(23), pages 1-17, November.
    3. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    4. Hesam Moghadasi & Mohamad Bayat & Ehsan Aminian & Jesper H. Hattel & Mahdi Bodaghi, 2022. "A Computational Fluid Dynamics Study of Laminar Forced Convection Improvement of a Non-Newtonian Hybrid Nanofluid within an Annular Pipe in Porous Media," Energies, MDPI, vol. 15(21), pages 1-16, November.
    5. Alexander Igolnikov & Pavel Skripov, 2023. "Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture," Energies, MDPI, vol. 16(5), pages 1-15, February.
    6. Oleg A. Kolenchukov & Kirill A. Bashmur & Sergei O. Kurashkin & Elena V. Tsygankova & Natalia A. Shepeta & Roman B. Sergienko & Praskovya L. Pavlova & Roman A. Vaganov, 2023. "Numerical and Experimental Study of Heat Transfer in Pyrolysis Reactor Heat Exchange Channels with Different Hemispherical Protrusion Geometries," Energies, MDPI, vol. 16(16), pages 1-27, August.
    7. Prachya Samruaisin & Rangsan Maza & Chinaruk Thianpong & Varesa Chuwattanakul & Naoki Maruyama & Masafumi Hirota & Smith Eiamsa-ard, 2023. "Enhanced Heat Transfer of a Heat Exchanger Tube Installed with V-Shaped Delta-Wing Baffle Turbulators," Energies, MDPI, vol. 16(13), pages 1-23, July.
    8. Debabrata Barik & Arun M. & Muhammad Ahsan Saeed & Tholkappiyan Ramachandran, 2022. "Experimental and Computational Analysis of Aluminum-Coated Dimple and Plain Tubes in Solar Water Heater System," Energies, MDPI, vol. 16(1), pages 1-18, December.
    9. Artur S. Bartosik, 2023. "Numerical Heat Transfer and Fluid Flow: New Advances," Energies, MDPI, vol. 16(14), pages 1-7, July.
    10. Muhammad Waheed Azam & Luca Cattani & Matteo Malavasi & Fabio Bozzoli, 2023. "Experimental Study of the Corrugation Profile Effect on the Local Heat Transfer Coefficient," Energies, MDPI, vol. 16(20), pages 1-21, October.
    11. Seyed Soheil Mousavi Ajarostaghi & Seyed Hossein Hashemi Karouei & Mehdi Alinia-kolaei & Alireza Ahmadnejad Karimi & Morteza Mohammad Zadeh & Kurosh Sedighi, 2023. "On the Hydrothermal Behavior of Fluid Flow and Heat Transfer in a Helical Double-Tube Heat Exchanger with Curved Swirl Generator; Impacts of Length and Position," Energies, MDPI, vol. 16(4), pages 1-19, February.
    12. Simon Kügele & Gino Omar Mathlouthi & Peter Renze & Thomas Grützner, 2022. "Numerical Simulation of Flow and Heat Transfer of a Discontinuous Single Started Helically Ribbed Pipe," Energies, MDPI, vol. 15(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15143-:d:973524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.