IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14699-d966472.html
   My bibliography  Save this article

Evaluation of Groundwater Sensitivity to Pollution Using GIS-Based Modified DRASTIC-LU Model for Sustainable Development in the Nile Delta Region

Author

Listed:
  • Nesma A. Arafa

    (Exploration Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomer St., Nasr City, Cairo 11727, Egypt
    Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Zenhom El-Said Salem

    (Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Mahmoud A. Ghorab

    (Exploration Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomer St., Nasr City, Cairo 11727, Egypt)

  • Shokry A. Soliman

    (Exploration Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomer St., Nasr City, Cairo 11727, Egypt)

  • Abdelaziz L. Abdeldayem

    (Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Yasser M. Moustafa

    (Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomer St., Nasr City, Cairo 11727, Egypt)

  • Hosni H. Ghazala

    (Geology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

Abstract

The groundwater resources in the Nile Delta region are an important resource for freshwater because of rising water demand due to anthropogenic activities. The goal of this study is to quantify groundwater sensitivity to pollution in the Nile Delta by a modified GIS-based DRASTIC-LU model. In this study, we utilized two types of modified DRASTIC-LU models, generic and pesticide, to determine the groundwater vulnerability rates to contamination. The results of the generic DRASTIC-LU model showed that the research region, except for the northwestern part with moderate vulnerability of 3.38%, is highly and very highly vulnerable to pollution with 42.69 and 53.91%, respectively. Results from the pesticide DRASTIC-LU model, on the other hand, also confirmed that, except for the northwestern and southern parts with a moderate vulnerability of 9.78%, most the Nile Delta is highly and very highly vulnerable with 50.68 and 39.53%, respectively. A validation of the model generated was conducted based on nitrate concentrations in the groundwater and a sensitivity analysis. Based on the nitrate analysis, the final output map showed a strong association with the pesticide vulnerability model. Examining the model sensitivity revealed that the influence of depth to water and net recharge were the most important factors to consider.

Suggested Citation

  • Nesma A. Arafa & Zenhom El-Said Salem & Mahmoud A. Ghorab & Shokry A. Soliman & Abdelaziz L. Abdeldayem & Yasser M. Moustafa & Hosni H. Ghazala, 2022. "Evaluation of Groundwater Sensitivity to Pollution Using GIS-Based Modified DRASTIC-LU Model for Sustainable Development in the Nile Delta Region," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14699-:d:966472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Assaf & M. Saadeh, 2009. "Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 775-796, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad Mushtaq & Habibur Rehman & Umair Ali & Muhammad Salman Babar & Mohammad Saleh Al-Suwaiyan & Zaher Mundher Yaseen, 2023. "An Investigation of Recharging Groundwater Levels through River Ponding: New Strategy for Water Management in Sutlej River," Sustainability, MDPI, vol. 15(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching-Ping Liang & Cheng-Shin Jang & Cheng-Wei Liang & Jui-Sheng Chen, 2016. "Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    2. Mohammad Kamali & Rouzbeh Nazari & Alireza Faridhosseini & Hossein Ansari & Saeid Eslamian, 2015. "The Determination of Reference Evapotranspiration for Spatial Distribution Mapping Using Geostatistics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3929-3940, September.
    3. Sérgio Mateus Chilaule & Mercedes Vélez-Nicolás & Verónica Ruiz-Ortiz & Ángel Sánchez-Bellón & Santiago García-López, 2023. "Assessment of Intrinsic Vulnerability Using DRASTIC vs. Actual Nitrate Pollution: The Case of a Detrital Aquifer Impacted by Intensive Agriculture in Cádiz (Southern Spain)," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    4. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    5. Lazhar Belkhiri & Tahoora Narany, 2015. "Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2073-2089, April.
    6. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    7. Lior Netzer & Noam Weisbrod & Daniel Kurtzman & Ahmed Nasser & Ellen Graber & Daniel Ronen, 2011. "Observations on Vertical Variability in Groundwater Quality: Implications for Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1315-1324, March.
    8. Sina Sadeghfam & Yousef Hassanzadeh & Ata Allah Nadiri & Mahdi Zarghami, 2016. "Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4585-4601, October.
    9. Adam Khalifa Mohamed & Dan Liu & Kai Song & Mohamed A. A. Mohamed & Elsiddig Aldaw & Basheer A. Elubid, 2019. "Hydrochemical Analysis and Fuzzy Logic Method for Evaluation of Groundwater Quality in the North Chengdu Plain, China," IJERPH, MDPI, vol. 16(3), pages 1-21, January.
    10. Mohamed Alfy & Aref Lashin & Nassir Al-Arifi & Abdulaziz Al-Bassam, 2015. "Groundwater Characteristics and Pollution Assessment Using Integrated Hydrochemical Investigations GIS and Multivariate Geostatistical Techniques in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5593-5612, December.
    11. Aminreza Neshat & Biswajeet Pradhan, 2015. "An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 543-563, March.
    12. K. Brindha & L. Elango, 2012. "Impact of Tanning Industries on Groundwater Quality near a Metropolitan City in India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1747-1761, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14699-:d:966472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.