IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11452-d913461.html
   My bibliography  Save this article

Impact Assessment of Morphology and Layout of Zones on Refugees’ Affordable Core Shelter Performance

Author

Listed:
  • Rojhat Ibrahim

    (Marcel Breuer Doctoral School, University of Pécs, Boszorkány u. 2, 7624 Pecs, Hungary
    Department of Architecture, Faculty of Engineering, University of Duhok, Duhok 42001, Iraq
    Energia Design Building Technology Research Group, Szentágothai Research Centre, Ifjúság útja 20, 7624 Pecs, Hungary)

  • Sara Elhadad

    (Marcel Breuer Doctoral School, University of Pécs, Boszorkány u. 2, 7624 Pecs, Hungary
    Energia Design Building Technology Research Group, Szentágothai Research Centre, Ifjúság útja 20, 7624 Pecs, Hungary
    Department of Architecture, Faculty of Engineering, Minia University, Minia 61111, Egypt
    Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány ut 2, 7624 Pecs, Hungary)

  • Bálint Baranyai

    (Marcel Breuer Doctoral School, University of Pécs, Boszorkány u. 2, 7624 Pecs, Hungary
    Energia Design Building Technology Research Group, Szentágothai Research Centre, Ifjúság útja 20, 7624 Pecs, Hungary
    Department of Building Structures and Energy Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány u. 2, 7624 Pecs, Hungary)

  • Tamás János Katona

    (Marcel Breuer Doctoral School, University of Pécs, Boszorkány u. 2, 7624 Pecs, Hungary
    Faculty of Engineering and Information Technology, University of Pécs, Boszorkány u. 2, 7624 Pecs, Hungary)

Abstract

The number of migrants increases globally due to natural disasters, global warming, and war conflicts. Inefficient and unsustainable construction approaches for migrant shelters have resulted from improper planning and design systems regarding lifespan, materials and techniques, and socio-cultural aspects. Therefore, the study aim has an incentive to assess the impact of the morphological, siting, and layout of zones and shelters for the long-term displacement prototypes considering sustainability concepts from social context, affordability, adaptability, low-impact construction materials, and techniques. Furthermore, applying the dynamic simulation IDA ICE 4.8 tool was cardinal to justify the comprehensive reported outcomes based on the bottom-up construction method after assessing energy and thermal comfort performance in seven cases. The energy performance assessment regarding heating reveals the superiority of the compact layout plan system, while the open-layout plan system is superior for electric cooling assessment. Concerning thermal comfort performance for the number of accepted hours category, the open-layout plan system is superior. Fanger indicators for thermal comfort assessment demonstrated the superiority of the horizontal-compact layout plan scheme. The carbon dioxide (CO 2 ) concentration level assessment shows that the open-yard layout cases have better results than other systems. To conclude, sustainable prototypes for displaced people should involve several aspects such as lifespan, socio-cultural and affordability, thermal performance and energy-efficient, and environmental impact. The beneficiaries from the methods and the results of this study would be firstly the Syrian refugees in the Middle East context, then various places and involved people affected by the displacement issue globally.

Suggested Citation

  • Rojhat Ibrahim & Sara Elhadad & Bálint Baranyai & Tamás János Katona, 2022. "Impact Assessment of Morphology and Layout of Zones on Refugees’ Affordable Core Shelter Performance," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11452-:d:913461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lara Alshawawreh & Francesco Pomponi & Bernardino D’Amico & Susan Snaddon & Peter Guthrie, 2020. "Qualifying the Sustainability of Novel Designs and Existing Solutions for Post-Disaster and Post-Conflict Sheltering," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    2. Vinh Van Tran & Duckshin Park & Young-Chul Lee, 2020. "Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality," IJERPH, MDPI, vol. 17(8), pages 1-27, April.
    3. Stefano Cascone & Renata Rapisarda & Dario Cascone, 2019. "Physical Properties of Straw Bales as a Construction Material: A Review," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    4. Sara Elhadad & Zoltan Orban, 2021. "A Sensitivity Analysis for Thermal Performance of Building Envelope Design Parameters," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    5. Sara Elhadad & Chro Hama Radha & István Kistelegdi & Bálint Baranyai & János Gyergyák, 2020. "Model Simplification on Energy and Comfort Simulation Analysis for Residential Building Design in Hot and Arid Climate," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rojhat Ibrahim & Bálint Baranyai & Haval Abdulkareem & Tamás János Katona, 2023. "Energy Use and Indoor Environment Performance in Sustainably Designed Refugee Shelters: Three Incremental Phases," Sustainability, MDPI, vol. 15(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    2. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    3. Jacopo Gaspari & Kristian Fabbri, 2022. "Exploring the Effects of Climate-Adaptive Building Shells: An Applicative Time-Saving Algorithm on a Case Study in Bologna, Italy," Energies, MDPI, vol. 15(21), pages 1-19, November.
    4. Mohammad Arar & Chuloh Jung, 2021. "Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates," IJERPH, MDPI, vol. 18(22), pages 1-19, November.
    5. Max Gerrit Adam & Phuong Thi Minh Tran & David Kok Wai Cheong & Sitaraman Chandra Sekhar & Kwok Wai Tham & Rajasekhar Balasubramanian, 2021. "Assessment of Home-Based and Mobility-Based Exposure to Black Carbon in an Urban Environment: A Pilot Study," IJERPH, MDPI, vol. 18(9), pages 1-18, May.
    6. Ling Zhang & Changjin Ou & Dhammika Magana-Arachchi & Meththika Vithanage & Kanth Swaroop Vanka & Thava Palanisami & Kanaji Masakorala & Hasintha Wijesekara & Yubo Yan & Nanthi Bolan & M. B. Kirkham, 2021. "Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation," IJERPH, MDPI, vol. 18(21), pages 1-33, October.
    7. Francesco Lolli & Antonio Maria Coruzzolo & Samuele Marinello & Asia Traini & Rita Gamberini, 2022. "A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    8. Shaye Palagi & Amy Javernick-Will, 2020. "Pathways to Livable Relocation Settlements Following Disaster," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    9. Aner Martinez-Soto & Carlos Jimenez-Gallardo & Andrés Villarroel-Lopez & Alejandro Reyes-Riveros & Johanna Höhl, 2024. "Toward Sustainable Indoor Environments: Assessing the Impact of Thermal Insulation Measures on Air Quality in Buildings—A Case Study in Temuco, Chile," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    10. Fanghua Li & Abbas Ali Chandio & Yinying Duan & Dungang Zang, 2022. "How Does Clean Energy Consumption Affect Women’s Health: New Insights from China," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    11. Xunzhi Yin & Jiaqi Yu & Qi Dong & Yongheng Jia & Cheng Sun, 2020. "Energy Sustainability of Rural Residential Buildings with Bio-Based Building Fabric in Northeast China," Energies, MDPI, vol. 13(21), pages 1-14, November.
    12. Rojhat Ibrahim & Bálint Baranyai & Haval Abdulkareem & Tamás János Katona, 2023. "Energy Use and Indoor Environment Performance in Sustainably Designed Refugee Shelters: Three Incremental Phases," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    13. Bryan Dorsey, 2021. "Refocusing on Sustainability: Promoting Straw Bale Building for Government-Assisted, Self-Help Housing Programs in Utah and Abroad," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
    14. El-Raheim, D. Abd & Mohamed, A. & Abou-Ziyan, H. & Fatouh, M., 2023. "The essential properties governing the appropriate selection of phase change materials integrated into heavy structure buildings," Energy, Elsevier, vol. 266(C).
    15. Alexandru Ilieș & Tudor Caciora & Florin Marcu & Zharas Berdenov & Gabriela Ilieș & Bahodirhon Safarov & Nicolaie Hodor & Vasile Grama & Maisa Ali Al Shomali & Dorina Camelia Ilies & Ovidiu Gaceu & Mo, 2022. "Analysis of the Interior Microclimate in Art Nouveau Heritage Buildings for the Protection of Exhibits and Human Health," IJERPH, MDPI, vol. 19(24), pages 1-26, December.
    16. Sangmu Bae & Yujin Nam & Joon-Ho Choi, 2020. "Comparative Analysis of System Performance and Thermal Comfort for an Integrated System with PVT and GSHP Considering Two Load Systems: Convective Heating and Radiant Floor Heating," Energies, MDPI, vol. 13(20), pages 1-19, October.
    17. He, Sha & Tang, Sanyi & Zhang, Qimin & Rong, Libin & Cheke, Robert A., 2023. "Modelling optimal control of air pollution to reduce respiratory diseases," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    18. Shirin Kahremany & Lukas Hofmann & Noy Eretz-Kdosha & Eldad Silberstein & Arie Gruzman & Guy Cohen, 2021. "SH-29 and SK-119 Attenuates Air-Pollution Induced Damage by Activating Nrf2 in HaCaT Cells," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    19. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    20. Yun-Shang Chiou & Joan Stephanie Elizalde, 2019. "Thermal Performances of Three Old Houses: A Comparative Study of Heterogeneous Vernacular Traditions in Taiwan," Sustainability, MDPI, vol. 11(19), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11452-:d:913461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.