IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9547-d879479.html
   My bibliography  Save this article

A Study on the Optimal Flexible Job-Shop Scheduling with Sequence-Dependent Setup Time Based on a Hybrid Algorithm of Improved Quantum Cat Swarm Optimization

Author

Listed:
  • Haicao Song

    (School of Management Science and Engineering Shandong Technology and Business University, Yantai 264005, China)

  • Pan Liu

    (College of Information and Management Science Henan Agricultural University, Zhengzhou 450002, China)

Abstract

Multi-item and small-lot-size production modes lead to frequent setup, which involves significant setup times and has a substantial impact on productivity. In this study, we investigated the optimal flexible job-shop scheduling problem with a sequence-dependent setup time. We built a mathematical model with the optimal objective of minimization of the maximum completion time (makespan). Considering the process sequence, which is influenced by setup time, processing time, and machine load limitations, first, processing machinery is chosen based on machine load and processing time, and then processing tasks are scheduled based on setup time and processing time. An improved quantum cat swarm optimization (QCSO) algorithm is proposed to solve the problem, a quantum coding method is introduced, the quantum bit (Q-bit) and cat swarm algorithm (CSO) are combined, and the cats are iteratively updated by quantum rotation angle position; then, the dynamic mixture ratio (MR) value is selected according to the number of algorithm iterations. The use of this method expands our understanding of space and increases operation efficiency and speed. Finally, the improved QCSO algorithm and parallel genetic algorithm (PGA) are compared through simulation experiments. The results show that the improved QCSO algorithm has better results, and the robustness of the algorithm is improved.

Suggested Citation

  • Haicao Song & Pan Liu, 2022. "A Study on the Optimal Flexible Job-Shop Scheduling with Sequence-Dependent Setup Time Based on a Hybrid Algorithm of Improved Quantum Cat Swarm Optimization," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9547-:d:879479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    2. Abdelmaguid, Tamer F., 2015. "A neighborhood search function for flexible job shop scheduling with separable sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 188-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Ji & Shujing Zhang & Samson S. Yu & Binqiao Zhang, 2023. "Mathematical Modeling and A Novel Heuristic Method for Flexible Job-Shop Batch Scheduling Problem with Incompatible Jobs," Sustainability, MDPI, vol. 15(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    2. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    3. M. Hajibabaei & J. Behnamian, 2023. "Fuzzy cleaner production in assembly flexible job-shop scheduling with machine breakdown and batch transportation: Lagrangian relaxation," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-26, July.
    4. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    5. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    6. Leilei Meng & Biao Zhang & Kaizhou Gao & Peng Duan, 2022. "An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    7. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    8. Chia-Yen Lee & Chen-Fu Chien, 2022. "Pitfalls and protocols of data science in manufacturing practice," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1189-1207, June.
    9. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2022. "Corrigendum to: “Solving the flexible job shop scheduling problem with sequence-dependent setup times”, [European Journal of Operational Research 265, 503–516, 2018]," European Journal of Operational Research, Elsevier, vol. 296(2), pages 748-748.
    10. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    11. uit het Broek, Michiel A.J. & Van der Heide, Gerlach & Van Foreest, Nicky D., 2020. "Energy-saving policies for temperature-controlled production systems with state-dependent setup times and costs," European Journal of Operational Research, Elsevier, vol. 287(3), pages 916-928.
    12. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    13. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    14. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    15. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    16. Wieslaw Kubiak & Yanling Feng & Guo Li & Suresh P. Sethi & Chelliah Sriskandarajah, 2020. "Efficient algorithms for flexible job shop scheduling with parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 272-288, June.
    17. Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2021. "Production and transport scheduling in flexible job shop manufacturing systems," Journal of Global Optimization, Springer, vol. 79(2), pages 463-502, February.
    18. Miguel S. E. Martins & Joaquim L. Viegas & Tiago Coito & Bernardo Firme & Andrea Costigliola & João Figueiredo & Susana M. Vieira & João M. C. Sousa, 2023. "Minimizing total completion time in large-sized pharmaceutical quality control scheduling," Journal of Heuristics, Springer, vol. 29(1), pages 177-206, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9547-:d:879479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.