IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6582-d825845.html
   My bibliography  Save this article

Prediction of the Height of Water-Conductive Fractured Zone under Continuous Extraction and Partial Backfill Mining Method—A Case Study

Author

Listed:
  • Yujun Xu

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China)

  • Liqiang Ma

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China
    School of Energy, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Ichhuy NGO

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China)

  • Jiangtao Zhai

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China)

Abstract

Longwall backfill mining effectively mitigates the height of water-conductive fractured zone (HWCFZ), preventing it from reaching the overlying aquifer and thus preserving the groundwater. However, it has the disadvantages of insufficient filling time and space as well as the mutual constraints between filling and mining. A novel continuous extraction and partial backfill (CEPB) water-preserving mining method was therefore proposed. The analytic hierarchy process (AHP) method was employed to identify the factors affecting the HWCFZ of CEPB, and five main factors, namely, the hard-rock lithology ratio, mining height and depth, and the width of the Wongawilli and protective block, were determined based on the weight distribution. UDEC software was used to establish a numerical model to simulate the HWCFZ under five factors. By using a multiple linear regression analysis of the numerical simulation results, a model for predicting the HWCFZ was established. It was applied in a colliery of the Yu-Shen mining area, and the HWCFZ was 57.7 m, 9% higher than that of borehole television logging of 53.1 m from the field measurement, indicating its rationality. Subsequently, the model was generalized and applied to the whole mining area, and the thematic map of the HWCFZ and the protective zone thickness of CEPB and longwall caving mining were obtained. The criterion for water-preserving mining based on the equivalent permeability coefficient of the protective zone is then proposed, which can provide guidance for the mining parameters optimization of the CEPB.

Suggested Citation

  • Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Prediction of the Height of Water-Conductive Fractured Zone under Continuous Extraction and Partial Backfill Mining Method—A Case Study," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6582-:d:825845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Continuous Extraction and Continuous Backfill Mining Method Using Carbon Dioxide Mineralized Filling Body to Preserve Shallow Water in Northwest China," Energies, MDPI, vol. 15(10), pages 1-24, May.
    2. Yujun Xu & Liqiang Ma & Yihe Yu, 2020. "Water Preservation and Conservation above Coal Mines Using an Innovative Approach: A Case Study," Energies, MDPI, vol. 13(11), pages 1-28, June.
    3. Yujun Xu & Liqiang Ma & Naseer Muhammad Khan, 2020. "Prediction and Maintenance of Water Resources Carrying Capacity in Mining Area—A Case Study in the Yu-Shen Mining Area," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    4. Shuokang Wang & Liqiang Ma, 2019. "Characteristics and Control of Mining Induced Fractures above Longwall Mines Using Backfilling," Energies, MDPI, vol. 12(23), pages 1-24, December.
    5. Yihe Yu & Liqiang Ma, 2019. "Application of Roadway Backfill Mining in Water-Conservation Coal Mining: A Case Study in Northern Shaanxi, China," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dangyu Zhang & Shiqi Liu & Dongyu Guo & Yubao Li & Wenxuan Song & Yiming Wang & Yang Liu, 2023. "Pipe Piles and Key Stratum Modeling for Grouting Reinforcement of Mine Floors under Mining Disturbance and Microseismic Monitoring Evaluation," Sustainability, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Continuous Extraction and Continuous Backfill Mining Method Using Carbon Dioxide Mineralized Filling Body to Preserve Shallow Water in Northwest China," Energies, MDPI, vol. 15(10), pages 1-24, May.
    2. Yujun Xu & Liqiang Ma & Naseer Muhammad Khan, 2020. "Prediction and Maintenance of Water Resources Carrying Capacity in Mining Area—A Case Study in the Yu-Shen Mining Area," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    3. Yihe Yu & Liqiang Ma & Dongsheng Zhang, 2019. "Characteristics of Roof Ground Subsidence While Applying a Continuous Excavation Continuous Backfill Method in Longwall Mining," Energies, MDPI, vol. 13(1), pages 1-20, December.
    4. Shuokang Wang & Liqiang Ma, 2019. "Characteristics and Control of Mining Induced Fractures above Longwall Mines Using Backfilling," Energies, MDPI, vol. 12(23), pages 1-24, December.
    5. Yinxin Ge & Jin Wu & Binghua Li & Xiaoyuan Cao & Jiangyue Wu, 2022. "Analysis and Evaluation of Variation Characteristics in Groundwater Resources Carrying Capacity in Beijing between 2010 and 2020," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    6. Slawomir Porzucek & Monika Loj & Kajetan d’Obyrn, 2022. "Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland," Energies, MDPI, vol. 15(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6582-:d:825845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.