IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4955-d545272.html
   My bibliography  Save this article

Evaluation of Reinforced Adobe Techniques for Sustainable Reconstruction in Andean Seismic Zones

Author

Listed:
  • José Carlos Cárdenas-Gómez

    (Facultad de Ingeniería Civil, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru)

  • Montserrat Bosch Gonzales

    (Department of Architectural Technology, Barcelona School of Building Construction (EPSEB), Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Carlos Arturo Damiani Lazo

    (Facultad de Ingeniería Civil, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru)

Abstract

This research presents a methodological process for selecting the most appropriate construction technique for the reconstruction of housing after a seismic disaster in a rural and heritage context. This process, which is applicable to a large part of the Andean region, incorporates sustainability criteria to guarantee the economic, social and environmental balance of the intervention. The methodology was developed on a case study: the Colca Valley in Arequipa, Peru. In 2016 an earthquake affected this zone, where traditional unreinforced earthen buildings suffered serious damage. The objective of this research focuses on comparing six traditional building techniques strongly related to self-building: four techniques for adobe housing—reinforced with cane (CRA), wire mesh (WMRA), geogrid (GRA) and halyard ropes (HRRA)—and two techniques for masonry buildings— confined (CM) and reinforced (RM). For this purpose the authors used the Integrated Value Model for Sustainable Assessment (MIVES), a Multiple Criteria Decision Analysis (MCDA) model used to compare alternatives by assigning a “sustainability index” to each evaluated construction technique. This research study includes two types of variables: quantitative, such as economy ($/m 2 ) and environmental impact (kgCO 2 /m 2 ), among others, and qualitative, such as perception of safety, respect for the urban image and popular knowledge. The research results show that reinforced adobe techniques are a viable and competitive option, highlighting the cane reinforced adobe technique (CRA), with a value of 0.714 in relation to industrialized materials such as masonry. This technique has the same safety characteristics, but at almost half the price, with the additional advantage of using traditional materials and construction methods, having less environmental impact and showing better thermal performance in cold climates.

Suggested Citation

  • José Carlos Cárdenas-Gómez & Montserrat Bosch Gonzales & Carlos Arturo Damiani Lazo, 2021. "Evaluation of Reinforced Adobe Techniques for Sustainable Reconstruction in Andean Seismic Zones," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4955-:d:545272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bibiana Alarcon & Antonio Aguado & Resmundo Manga & Alejandro Josa, 2010. "A Value Function for Assessing Sustainability: Application to Industrial Buildings," Sustainability, MDPI, vol. 3(1), pages 1-16, December.
    2. Luís Bragança & Ricardo Mateus & Heli Koukkari, 2010. "Building Sustainability Assessment," Sustainability, MDPI, vol. 2(7), pages 1-14, July.
    3. Susana Serrano & Lídia Rincón & Belen González & Antonia Navarro & Montserrat Bosch & Luisa F. Cabeza, 2017. "Rammed earth walls in Mediterranean climate: material characterization and thermal behaviour," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(3), pages 281-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    2. Ariadna Carrobé & Lídia Rincón & Ingrid Martorell, 2021. "Thermal Monitoring and Simulation of Earthen Buildings. A Review," Energies, MDPI, vol. 14(8), pages 1-47, April.
    3. Javier Orozco-Messana & Milagro Iborra-Lucas & Raimon Calabuig-Moreno, 2021. "Neighbourhood Modelling for Urban Sustainability Assessment," Sustainability, MDPI, vol. 13(9), pages 1-10, April.
    4. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    5. Reza Kiani Mavi & Denise Gengatharen & Neda Kiani Mavi & Richard Hughes & Alistair Campbell & Ross Yates, 2021. "Sustainability in Construction Projects: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    6. Oriol Pons & Saeid Habibi & Diana Peña, 2018. "Sustainability Assessment of Household Waste Based Solar Control Devices for Workshops in Primary Schools," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    7. Houda Taoudi Benchekroun & Zoubida Benmamoun & Hanaa Hachimi, 2022. "Implementation and Sustainability Assessment of a Public Procurement Strategy," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    8. Helen W Zheng & Geoffrey QP Shen & Yan Song & Bingxia Sun & Jingke Hong, 2017. "Neighborhood sustainability in urban renewal: An assessment framework," Environment and Planning B, , vol. 44(5), pages 903-924, September.
    9. Zeinab Asadpourian & Mehdi Rahimian & Saeed Gholamrezai, 2020. "SWOT-AHP-TOWS Analysis for Sustainable Ecotourism Development in the Best Area in Lorestan Province, Iran," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 289-315, November.
    10. Majid Baseer & Christian Ghiaus & Roxane Viala & Ninon Gauthier & Souleymane Daniel, 2023. "pELECTRE-Tri: Probabilistic ELECTRE-Tri Method—Application for the Energy Renovation of Buildings," Energies, MDPI, vol. 16(14), pages 1-25, July.
    11. Laura Tupenaite & Irene Lill & Ineta Geipele & Jurga Naimaviciene, 2017. "Ranking of Sustainability Indicators for Assessment of the New Housing Development Projects: Case of the Baltic States," Resources, MDPI, vol. 6(4), pages 1-21, October.
    12. Deniz Frost & Oliver Gericke & Roberta Di Bari & Laura Balangé & Li Zhang & Boris Blagojevic & David Nigl & Phillip Haag & Lucio Blandini & Hans Christian Jünger & Cordula Kropp & Philip Leistner & Ol, 2022. "Holistic Quality Model and Assessment—Supporting Decision-Making towards Sustainable Construction Using the Design and Production of Graded Concrete Components as an Example," Sustainability, MDPI, vol. 14(18), pages 1-32, September.
    13. Marco Scherz & Bernd Markus Zunk & Christian Steinmann & Helmuth Kreiner, 2022. "How to Assess Sustainable Planning Processes of Buildings? A Maturity Assessment Model Approach for Designers," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    14. Mozhdeh Rostamnezhad & Muhammad Jamaluddin Thaheem, 2022. "Social Sustainability in Construction Projects—A Systematic Review of Assessment Indicators and Taxonomy," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    15. Duc Binh Tran & Van Tan Tran & Xuan Anh Pham & Van Tuan Nguyen, 2023. "A General Framework for Sustainability Assessment of Buildings: A Life-Cycle Thinking Approach," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    16. Ziortza Egiluz & Jesús Cuadrado & Andoni Kortazar & Ignacio Marcos, 2021. "Multi-Criteria Decision-Making Method for Sustainable Energy-Saving Retrofit Façade Solutions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    17. Jin Ouk Choi & Ankit Bhatla & Christopher M. Stoppel & Jennifer S. Shane, 2015. "LEED Credit Review System and Optimization Model for Pursuing LEED Certification," Sustainability, MDPI, vol. 7(10), pages 1-27, September.
    18. Nina Lazar & K. Chithra, 2021. "Comprehensive bibliometric mapping of publication trends in the development of Building Sustainability Assessment Systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4899-4923, April.
    19. Eva Krídlová Burdová & Iveta Selecká & Silvia Vilčeková & Dušan Burák & Anna Sedláková, 2020. "Evaluation of Family Houses in Slovakia Using a Building Environmental Assessment System," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    20. Hui Zhu & Shuenn-Ren Liou & Pi-Cheng Chen, 2022. "Material Classification and Reuse Framework Based on the Reverse Dismantling of Architectural Design: A Case Study in TCCLab," Sustainability, MDPI, vol. 14(22), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4955-:d:545272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.