IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4350-d535785.html
   My bibliography  Save this article

Pathways to Commercialisation for Brown Coal Fly Ash-Based Geopolymer Concrete in Australia

Author

Listed:
  • Ezzatollah Shamsaei

    (Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
    Co-First authors.)

  • Owen Bolt

    (Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
    Co-First authors.)

  • Felipe Basquiroto de Souza

    (Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia)

  • Emad Benhelal

    (The University of Newcastle Research Associate (TUNRA), The University of Newcastle, Callaghan, NSW 2308, Australia)

  • Kwesi Sagoe-Crentsil

    (Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia)

  • Jay Sanjayan

    (Center for Smart Infrastructure and Digital Construction, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

Abstract

Utilising geopolymer as a construction material has gained institutional and commercial interest over the past decade, due to its favourable emissions profile as an alternative to carbon-intensive Ordinary Portland Cement-based concrete, which currently accounts for around 7% of global carbon emissions. While significant research has been performed into the material properties of geopolymer, the commercialisation of the technology is still in its infancy, and several key barriers require rectification to facilitate more widespread adoption. This article analyses the current state of geopolymer commercialisation, paying particular attention to its commercial application in Australia, and it suggests key research areas, in particular relating to the utilisation of abundant and cheap low-quality fly ash sources such as brown coal-based fly ash, to promote its adoption and build on the momentum gained from the small scale in situ pours of geopolymer concrete. Our analysis indicated that in addition to the barriers relating to material properties, economic, social, and regulatory issues also require further inquiry. Our review also indicated that it is critical to update and improve economic analysis of geopolymer utilisation to forecast future costs of both geopolymer and concrete mixes, which are especially critical in determining any potential financial incentives for the construction industry. Moreover, it is essential to study the social attitudes affecting future geopolymer consumption and to update the regulatory standards governing geopolymer utilisation in Australia, such as the initial steps undertaken by the Low Carbon Living Cooperative Research Centre. Based on this review, it is suggested that solving these key issues would help proliferate geopolymer technology and further aid efforts to create a more environmentally sustainable construction industry.

Suggested Citation

  • Ezzatollah Shamsaei & Owen Bolt & Felipe Basquiroto de Souza & Emad Benhelal & Kwesi Sagoe-Crentsil & Jay Sanjayan, 2021. "Pathways to Commercialisation for Brown Coal Fly Ash-Based Geopolymer Concrete in Australia," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4350-:d:535785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steffen Lehmann, 2012. "Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems," Sustainability, MDPI, vol. 4(10), pages 1-36, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinghui Song & Junwu Wang & Feng Guo & Jiequn Lu & Sen Liu, 2021. "Research on Supplier Selection of Prefabricated Building Elements from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 13(11), pages 1-24, May.
    2. Dushan Fernando & Satheeskumar Navaratnam & Pathmanathan Rajeev & Jay Sanjayan, 2023. "Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    3. Tetsuya Iwase & Takanobu Sasaki & Shogo Araki & Tomohumi Huzita & Chihiro Kayo, 2020. "Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    4. Cindy X. Chen & Francesca Pierobon & Indroneil Ganguly, 2019. "Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    5. Antonino Di Bella & Milica Mitrovic, 2020. "Acoustic Characteristics of Cross-Laminated Timber Systems," Sustainability, MDPI, vol. 12(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4350-:d:535785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.