IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7907-d594856.html
   My bibliography  Save this article

Quantitative Analysis of Polymetallic Ions in Industrial Wastewater Based on Ultraviolet-Visible Spectroscopy

Author

Listed:
  • Fengbo Zhou

    (School of Information Engineering, Shaoyang University, Shaoyang 422000, China)

  • Ammar Oad

    (School of Information Engineering, Shaoyang University, Shaoyang 422000, China)

  • Hongqiu Zhu

    (School of Automation, Central South University, Changsha 410083, China)

  • Changgeng Li

    (School of Physics and Electronics, Central South University, Changsha 410083, China)

Abstract

In order to detect and control the concentration of polymetallic ions in industrial wastewater in real time, a spectrophotometric method combining wavelet transform (WT) and partial least squares regression (PLSR) is proposed for the simultaneous determination of zinc, cobalt and nickel in industrial wastewater by ultraviolet-visible spectrometry, without a separation step. WT was found to be suitable for spectral preprocessing, which effectively eliminated the noise, enhanced spectral feature information, improved the linearity of the detected ions and increased the number of selectable modeling wavelengths. PLSR was used to study the simultaneous detection of zinc, cobalt and nickel. The linear detection ranges were 10–100 mg/L for zinc, 0.6–6.0 mg/L for nickel and 0.3–3.0 mg/L for cobalt. The average relative deviation for zinc, nickel and cobalt was 2.85%, 3.05% and 2.24%, respectively. The results indicated that the WT–PLSR method is suitable for the online detection of polymetallic ions by ultraviolet-visible spectroscopy in zinc industrial wastewater.

Suggested Citation

  • Fengbo Zhou & Ammar Oad & Hongqiu Zhu & Changgeng Li, 2021. "Quantitative Analysis of Polymetallic Ions in Industrial Wastewater Based on Ultraviolet-Visible Spectroscopy," Sustainability, MDPI, vol. 13(14), pages 1-10, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7907-:d:594856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yadav, Deepak & Banerjee, Rangan, 2018. "A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Applied Energy, Elsevier, vol. 229(C), pages 577-602.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    2. Voicu-Teodor Muica & Alexandru Ozunu & Zoltàn Török, 2021. "Comparative Life Cycle Impact Assessment between the Productions of Zinc from Conventional Concentrates versus Waelz Oxides Obtained from Slags," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    3. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    4. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    5. Adrián García & Rut Sanchis & Francisco J. Llopis & Isabel Vázquez & María Pilar Pico & María Luisa López & Inmaculada Álvarez-Serrano & Benjamín Solsona, 2020. "Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into γ-Valerolactone without the Addition of Molecular Hydrogen," Energies, MDPI, vol. 13(13), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7907-:d:594856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.