IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6362-d568359.html
   My bibliography  Save this article

Evaluation and Classification of Rural Multifunction at a Grid Scale: A Case Study of Miyun District, Beijing

Author

Listed:
  • Ziyan Yin

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

  • Yu Liu

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

  • Yuchun Pan

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

Abstract

Rural areas are a natural, economic and social complex with multiple functions. Identifying rural multifunction scientifically is the basis for promoting efficient rural spatial planning and sustainable development strategy. In this paper, we calculated and characterized the rural production-living-ecological (PLE) functions at a grid scale of 300 × 300 m in Miyun District by establishing an evaluation index system. Several types of rural functional area were identified with the help of an ISO cluster unsupervised classification tool. Three main results were found as follows. (1) The values of the production, living, ecological functions and multifunction ranged from 0–0.101, 0–0.204, 0.009–0.241 and 0.009–0.302, respectively. Ecological function was dominant in this area. (2) The overall spatial patterns of production and living functions showed the characteristic of being “high in the south and low in the north”, and areas with high values were almost distributed around urban areas and the Miyun Reservoir. While for the ecological function and multifunction, they possessed the opposite characteristics to production and living functions, with high values concentrated in the mountainous areas in the northwest, northeast, east and south of Miyun District. (3) According to the clustering results, rural multifunction of Miyun District was divided into four types: ecological conservation, employment and residence, recreation and potential development, with the area proportions of 44.22%, 17.92%, 20.73% and 17.13%, respectively. Each functional type showed a characteristic of agglomeration. In the future, the study of rural multifunction at micro scales should be paid more attention to better understand the functional differences within the country. This research can provide a decision-making reference for demarcation of rural production-living-ecological space and compilation of spatial planning.

Suggested Citation

  • Ziyan Yin & Yu Liu & Yuchun Pan, 2021. "Evaluation and Classification of Rural Multifunction at a Grid Scale: A Case Study of Miyun District, Beijing," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6362-:d:568359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    2. Zhenhua Dong & Jiquan Zhang & Alu Si & Zhijun Tong & Li Na, 2020. "Multidimensional Analysis of the Spatiotemporal Variations in Ecological, Production and Living Spaces of Inner Mongolia and an Identification of Driving Forces," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    3. Di Wang & Dong Jiang & Jingying Fu & Gang Lin & Jialun Zhang, 2020. "Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    4. Jiang, Guanghui & Wang, Mingzhu & Qu, Yanbo & Zhou, Dingyang & Ma, Wenqiu, 2020. "Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linlin Wang & Qiyuan Hu & Liming Liu & Chengcheng Yuan, 2022. "Land Use Multifunctions in Metropolis Fringe: Spatiotemporal Identification and Trade-Off Analysis," Land, MDPI, vol. 12(1), pages 1-18, December.
    2. Tianyi Zhao & Yuning Cheng & Yiyang Fan & Xiangnan Fan, 2022. "Functional Tradeoffs and Feature Recognition of Rural Production–Living–Ecological Spaces," Land, MDPI, vol. 11(7), pages 1-27, July.
    3. Rongtian Zhang, 2022. "Spatial Differentiation and Tradeoff–Synergy of Rural Multifunction at the County Scale in Anhui Province in the China’s Traditional Agricultural Areas," IJERPH, MDPI, vol. 19(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Liang & Fei Yang & Yinchen Luo & Mengying Fang & Xi Huang & Zhiyong Zhang & Chuanhao Wen & Xiaohong Ren, 2022. "The Synchronous Development Pattern and Type Division of Functional Coupling Coordination and Human Activity Intensity Based on the “Production–Living–Ecological” Space Perspective: A Case Study of Wa," Land, MDPI, vol. 11(11), pages 1-17, October.
    2. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    3. Jianglin Lu & Keqiang Wang & Hongmei Liu, 2022. "Residents’ Selection Behavior of Compensation Schemes for Construction Land Reduction: Empirical Evidence from Questionnaires in Shanghai, China," Land, MDPI, vol. 12(1), pages 1-29, December.
    4. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    6. Peng Zeng & Sihui Wu & Zongyao Sun & Yujia Zhu & Yuqi Chen & Zhi Qiao & Liangwa Cai, 2021. "Does Rural Production–Living–Ecological Spaces Have a Preference for Regional Endowments? A Case of Beijing-Tianjin-Hebei, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    7. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    8. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    9. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    10. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    11. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    12. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    13. Shunqian Gao & Liu Yang & Hongzan Jiao, 2022. "Changes in and Patterns of the Tradeoffs and Synergies of Production-Living-Ecological Space: A Case Study of Longli County, Guizhou Province, China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    14. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    15. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    16. Zhang, Yuanxia & Halder, Pradipta & Zhang, Xiaoning & Qu, Mei, 2020. "Analyzing the deviation between farmers' Land transfer intention and behavior in China's impoverished mountainous Area: A Logistic-ISM model approach," Land Use Policy, Elsevier, vol. 94(C).
    17. Gang Lin & Dong Jiang & Jingying Fu & Yi Zhao, 2022. "A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework," Land, MDPI, vol. 11(3), pages 1-15, February.
    18. Yue, Wenze & Wang, Tianyu & Liu, Yong & Zhang, Qun & Ye, Xinyue, 2019. "Mismatch of morphological and functional polycentricity in Chinese cities: An evidence from land development and functional linkage," Land Use Policy, Elsevier, vol. 88(C).
    19. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    20. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6362-:d:568359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.