IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p3032-d343594.html
   My bibliography  Save this article

A Distributed Cooperative Control Strategy of Offshore Wind Turbine Groups with Input Time Delay

Author

Listed:
  • Bing Wang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Zhen Tang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Weiyang Liu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Qiuqiao Zhang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

Abstract

With large-scale development of offshore wind power and the increasing scale of power grid interconnection, more and more attention has been drawn to the stable operation of wind power units. When the wide area measurement system (WAMS) is applied to the power system, the time delay mainly occurs in the signal measurement and transmission of the power system. When 10MW wind turbines transmit information through complex communication network, time delay often exists, which leads to the degradation of performance and instability for system. This affects the normal operation of a wind farm. Therefore, in this paper, the distributed control problem of doubly fed wind turbines with input time delay is studied based on the Hamiltonian energy theory. Firstly, the Port-controlled Hamiltonian system with Dissipation (PCH-D) model is implemented with the Hamiltonian energy method. Then, the Casimir function is introduced into the PCH-D model of the single wind turbine system to stabilize the time delay. The wind turbine group is regarded as one network and the distributed control strategy is designed, so that the whole wind turbine cluster can remain stable given a time delay occurring in the range of 30–300 ms. Finally, simulation results show that the output power of the wind turbine cluster with input delay converges to the expected value rapidly and remains stable. Additionally, the system error caused by time delay is greatly reduced. This control method can effectively solve the problem of input time delay and improve the stability of the wind turbine cluster. Moreover, the method proposed in this paper can adopt the conventional time step of dynamic simulation, which is more efficient in calculation. This method has adaptability in transient stability analysis of large-scale power system, however, the third-order mathematical model used in this paper cannot be used to analyze the internal dynamics of the whole power converter.

Suggested Citation

  • Bing Wang & Zhen Tang & Weiyang Liu & Qiuqiao Zhang, 2020. "A Distributed Cooperative Control Strategy of Offshore Wind Turbine Groups with Input Time Delay," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3032-:d:343594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/3032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/3032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bing Wang & Qiuxuan Wu & Min Tian & Qingyi Hu, 2017. "Distributed Coordinated Control of Offshore Doubly Fed Wind Turbine Groups Based on the Hamiltonian Energy Method," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    2. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis & Spyros Galatsidas & Dimitrios Drosos, 2018. "A Social Assessment of the Usage of Renewable Energy Sources and Its Contribution to Life Quality: The Case of an Attica Urban Area in Greece," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    3. Arabatzis, Garyfallos & Kyriakopoulos, Grigorios & Tsialis, Panagiotis, 2017. "Typology of regional units based on RES plants: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1424-1434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    2. Croce, Antonello Ignazio & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Sustainable mobility and energy resources: A quantitative assessment of transport services with electrical vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Xiaohui Yu & Sai Ma & Kang Cheng & Grigorios L. Kyriakopoulos, 2020. "An Evaluation System for Sustainable Urban Space Development Based in Green Urbanism Principles—A Case Study Based on the Qin-Ba Mountain Area in China," Sustainability, MDPI, vol. 12(14), pages 1-22, July.
    4. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    5. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    6. Ciprian Sorandaru & Sorin Musuroi & Flaviu Mihai Frigura-Iliasa & Doru Vatau & Marian Dordescu, 2019. "Analysis of the Wind System Operation in the Optimal Energetic Area at Variable Wind Speed over Time," Sustainability, MDPI, vol. 11(5), pages 1-16, February.
    7. Stamatios Ntanos & Grigorios Kyriakopoulos & Michalis Skordoulis & Miltiadis Chalikias & Garyfallos Arabatzis, 2019. "An Application of the New Environmental Paradigm (NEP) Scale in a Greek Context," Energies, MDPI, vol. 12(2), pages 1-18, January.
    8. Jan Macháč & Lenka Zaňková, 2020. "Renewables—To Build or Not? Czech Approach to Impact Assessment of Renewable Energy Sources with an Emphasis on Municipality Perspective," Land, MDPI, vol. 9(12), pages 1-15, December.
    9. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    10. Sofia-Despoina Papadopoulou & Niki Kalaitzoglou & Maria Psarra & Sideri Lefkeli & Evangelia Karasmanaki & Georgios Tsantopoulos, 2019. "Addressing Energy Poverty through Transitioning to a Carbon-Free Environment," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    11. Stamatios Ntanos & Grigorios L. Kyriakopoulos & Garyfallos Arabatzis & Vasilios Palios & Miltiadis Chalikias, 2018. "Environmental Behavior of Secondary Education Students: A Case Study at Central Greece," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    12. Suleman Sarwar & Dalia Streimikiene & Rida Waheed & Zouheir Mighri, 2021. "Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 419-440, March.
    13. Marcin Rabe & Dalia Streimikiene & Wojciech Drożdż & Yuriy Bilan & Rafal Kasperowicz, 2020. "Sustainable regional energy planning: The case of hydro," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1652-1662, November.
    14. Alkistis E. Kanteraki & Grigorios L. Kyriakopoulos & Miltiadis Zamparas & Vasilis C. Kapsalis & Sofoklis S. Makridis & Giouli Mihalakakou, 2020. "Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece," Challenges, MDPI, vol. 11(1), pages 1-22, February.
    15. Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
    16. Sunčana Slijepčević & Željka Kordej-De Villa, 2021. "Public Attitudes toward Renewable Energy in Croatia," Energies, MDPI, vol. 14(23), pages 1-17, December.
    17. Anita Boros & Csaba Fogarassy, 2019. "Relationship between Corporate Sustainability and Compliance with State-Owned Enterprises in Central-Europe: A Case Study from Hungary," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    18. Grigorios L. Kyriakopoulos & Vasilis C. Kapsalis & Konstantinos G. Aravossis & Miltiadis Zamparas & Alexandros Mitsikas, 2019. "Evaluating Circular Economy under a Multi-Parametric Approach: A Technological Review," Sustainability, MDPI, vol. 11(21), pages 1-24, November.
    19. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    20. Chuanwang Sun & Lanyun Chen & Guangxiao Huang, 2019. "Decomposition Analysis of CO 2 Emissions Embodied in the International Trade of Russia," Sustainability, MDPI, vol. 12(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3032-:d:343594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.