IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6027-d390459.html
   My bibliography  Save this article

Evaluating Active Traffic Management (ATM) Strategies under Non-Recurring Congestion: Simulation-Based with Benefit Cost Analysis Case Study

Author

Listed:
  • Siham G. Farrag

    (Transportation Research Institute (IMOB), Universiteit Hasselt, 3590 Hasselt, Belgium
    Department of Civil Engineering, Middle East College (MEC), Muscat 124, Oman)

  • Fatma Outay

    (College of Technological Innovation, Zayed University, Dubai 19282, UAE)

  • Ansar Ul-Haque Yasar

    (Transportation Research Institute (IMOB), Universiteit Hasselt, 3590 Hasselt, Belgium)

  • Moulay Youssef El-Hansali

    (Transportation Research Institute (IMOB), Universiteit Hasselt, 3590 Hasselt, Belgium)

Abstract

Dynamic hard shoulder running and ramp closure are two active traffic management (ATM) strategies that are used to alleviate highway traffic congestion. This study aims to evaluate the effects of these two strategies on congested freeways under non-recurring congestion. The study’s efforts can be considered in two parts. First, we performed a detailed microsimulation analysis to quantify the potential benefits of these two ATM strategies in terms of safety, traffic operation, and environmental impact. Second, we evaluated the implementation feasibility of these two strategies. The simulation results indicated that the implementation of the hard shoulder showed a 50%–57% reduction in delay, a 41%–44% reduction in fuel consumption and emissions, and a 15%–18% increase in bottleneck throughput. By contrast, the implementation of ramp closure showed a 20%–34% decrease in travel time, a 6%–9% increase in bottleneck throughput, and an 18%–32% reduction in fuel consumption and emissions. Eventually, both strategies were found to be economically feasible.

Suggested Citation

  • Siham G. Farrag & Fatma Outay & Ansar Ul-Haque Yasar & Moulay Youssef El-Hansali, 2020. "Evaluating Active Traffic Management (ATM) Strategies under Non-Recurring Congestion: Simulation-Based with Benefit Cost Analysis Case Study," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6027-:d:390459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6027/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6027/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Younshik Chung, 2017. "Identification of Critical Factors for Non-Recurrent Congestion Induced by Urban Freeway Crashes and Its Mitigating Strategies," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    2. Olja Čokorilo & Ivan Ivković & Snežana Kaplanović, 2019. "Prediction of Exhaust Emission Costs in Air and Road Transportation," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Yang & Fan Wang & Fan Ding & Huachun Tan & Bin Ran, 2021. "Identify Optimal Traffic Condition and Speed Limit for Hard Shoulder Running Strategy," Sustainability, MDPI, vol. 13(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    2. Daniel Rey Aldana & Francisco Reyes Santias & Pilar Mazón Ramos & Manuel Portela Romero & Sergio Cinza Sanjurjo & Belén Álvarez Álvarez & Rosa Agra Bermejo & Francisco Gude Sampedro & José R. González, 2021. "Cost and Potential Savings of Electronic Consultation and Its Relationship with Reduction in Atmospheric Pollution," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    3. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Shumin Bai & Xiaofeng Ji & Bingyou Dai & Yongming Pu & Wenwen Qin, 2022. "An Integrated Model for the Geohazard Accident Duration on a Regional Mountain Road Network Using Text Data," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    5. Lian Zhu & Linjun Lu & Wenying Zhang & Yurou Zhao & Meining Song, 2019. "Analysis of Accident Severity for Curved Roadways Based on Bayesian Networks," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    6. Navin Ranjan & Sovit Bhandari & Pervez Khan & Youn-Sik Hong & Hoon Kim, 2021. "Large-Scale Road Network Congestion Pattern Analysis and Prediction Using Deep Convolutional Autoencoder," Sustainability, MDPI, vol. 13(9), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6027-:d:390459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.