IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5716-d385283.html
   My bibliography  Save this article

Applications of GIS-Based Software to Improve the Sustainability of a Forwarding Operation in Central Italy

Author

Listed:
  • Rodolfo Picchio

    (Department of Agriculture, Forests, Nature and Energy, Tuscia University, DAFNE, Viterbo-Italy; Via San Camillo de Lellis, 01100 Viterbo, Italy)

  • Francesco Latterini

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (RM), Italy)

  • Piotr S. Mederski

    (Department of Forest Utilisation, Faculty of Forestry, Poznań University of Life Sciences (PULS), ul. Wojska Polskiego 71A, 60-625 Poznań, Poland)

  • Damiano Tocci

    (Department of Agriculture, Forests, Nature and Energy, Tuscia University, DAFNE, Viterbo-Italy; Via San Camillo de Lellis, 01100 Viterbo, Italy)

  • Rachele Venanzi

    (Department of Agriculture, Forests, Nature and Energy, Tuscia University, DAFNE, Viterbo-Italy; Via San Camillo de Lellis, 01100 Viterbo, Italy)

  • Walter Stefanoni

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (RM), Italy)

  • Luigi Pari

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (RM), Italy)

Abstract

Reducing potential soil damage due to the passing of forest machinery is a key issue in sustainable forest management. Limiting soil compaction has a significant positive impact on forest soil. With this in mind, the aim of this work was the application of precision forestry tools, namely the Global Navigation Satellite System (GNSS) and Geographic Information System (GIS), to improve forwarding operations in hilly areas, thereby reducing the soil surface impacted. Three different forest study areas located on the slopes of Mount Amiata (Tuscany, Italy) were analyzed. Extraction operations were carried out using a John Deere 1410D forwarder. The study was conducted in chestnut ( Castanea sativa Mill.) coppice, and two coniferous stands: black pine ( Pinus nigra Arn.) and Monterey pine ( Pinus radiata D. Don). The first stage of this work consisted of field surveys collecting data concerning new strip roads prepared by the forwarder operator to extract all the wood material from the forest areas. These new strip roads were detected using a GNSS system: specifically, a Trimble Juno Sb handheld data collector. The accumulated field data were recorded in GIS Software Quantum GIS 2.18, allowing the creation of strip road shapefiles followed by a calculation of the soil surface impacted during the extraction operation. In the second phase, various GIS tools were used to define a preliminary strip road network, developed to minimize impact on the surface, and, therefore, environmental disturbance. The results obtained showed the efficiency of precision forestry tools to improve forwarding operations. This electronic component, integrated with the on-board GNSS and GIS systems of the forwarder, could assure that the machine only followed the previously-planned strip roads, leading to a considerable reduction of the soil compaction and topsoil disturbances. The use of such tool can also minimize the risks of accidents in hilly areas operations, thus allowing more sustainable forest operations under all the three pillars of sustainability (economy, environment and society).

Suggested Citation

  • Rodolfo Picchio & Francesco Latterini & Piotr S. Mederski & Damiano Tocci & Rachele Venanzi & Walter Stefanoni & Luigi Pari, 2020. "Applications of GIS-Based Software to Improve the Sustainability of a Forwarding Operation in Central Italy," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5716-:d:385283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rachele Venanzi & Rodolfo Picchio & Raffaele Spinelli & Stefano Grigolato, 2020. "Soil Disturbance and Recovery after Coppicing a Mediterranean Oak Stand: The Effects of Silviculture and Technology," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    2. Hadi Sohrabi & Meghdad Jourgholami & Mohammad Jafari & Naghi Shabanian & Rachele Venanzi & Farzam Tavankar & Rodolfo Picchio, 2020. "Soil Recovery Assessment after Timber Harvesting Based on the Sustainable Forest Operation (SFO) Perspective in Iranian Temperate Forests," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    3. Janine Schweier & Boško Blagojević & Rachele Venanzi & Francesco Latterini & Rodolfo Picchio, 2019. "Sustainability Assessment of Alternative Strip Clear Cutting Operations for Wood Chip Production in Renaturalization Management of Pine Stands," Energies, MDPI, vol. 12(17), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Latterini & Rachele Venanzi & Damiano Tocci & Rodolfo Picchio, 2022. "Depth-to-Water Maps to Identify Soil Areas That Are Potentially Sensitive to Logging Disturbance: Initial Evaluations in the Mediterranean Forest Context," Land, MDPI, vol. 11(5), pages 1-13, May.
    2. Farzam Tavankar & Mehrdad Nikooy & Francesco Latterini & Rachele Venanzi & Leonardo Bianchini & Rodolfo Picchio, 2021. "The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    3. Rachele Venanzi & Francesco Latterini & Walter Stefanoni & Damiano Tocci & Rodolfo Picchio, 2022. "Variations of Soil Physico-Chemical and Biological Features after Logging Using Two Different Ground-Based Extraction Methods in a Beech High Forest—A Case Study," Land, MDPI, vol. 11(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachele Venanzi & Francesco Latterini & Walter Stefanoni & Damiano Tocci & Rodolfo Picchio, 2022. "Variations of Soil Physico-Chemical and Biological Features after Logging Using Two Different Ground-Based Extraction Methods in a Beech High Forest—A Case Study," Land, MDPI, vol. 11(3), pages 1-14, March.
    2. Azadeh Khoramizadeh & Meghdad Jourgholami & Mohammad Jafari & Rachele Venanzi & Farzam Tavankar & Rodolfo Picchio, 2021. "Soil Restoration through the Application of Organic Mulch Following Skidding Operations Causing Vehicle Induced Compaction in the Hyrcanian Forests, Northern Iran," Land, MDPI, vol. 10(10), pages 1-17, October.
    3. Farzam Tavankar & Mehrdad Nikooy & Francesco Latterini & Rachele Venanzi & Leonardo Bianchini & Rodolfo Picchio, 2021. "The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    4. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    5. Kigwang Baek & Eunjai Lee & Hyungtae Choi & Minjae Cho & Yunsung Choi & Sangkyun Han, 2022. "Impact on Soil Physical Properties Related to a High Mechanization Level in the Row Thinning of a Korean Pine Stand," Land, MDPI, vol. 11(3), pages 1-12, February.
    6. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    7. Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Giulio Sperandio & Alessandro Suardi & Vincenzo Civitarese & Rodolfo Picchio, 2022. "Work Productivity, Costs and Environmental Impacts of Two Thinning Methods in Italian Beech High Forests," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    8. Farzam Tavankar & Rodolfo Picchio & Mehrdad Nikooy & Meghdad Jourgholami & Ramin Naghdi & Francesco Latterini & Rachele Venanzi, 2021. "Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder," Land, MDPI, vol. 10(2), pages 1-17, January.
    9. Hadi Sohrabi & Meghdad Jourgholami & Angela Lo Monaco & Rodolfo Picchio, 2022. "Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice," Land, MDPI, vol. 11(5), pages 1-15, May.
    10. Michael Starke & Cédric Derron & Felix Heubaum & Martin Ziesak, 2020. "Rut Depth Evaluation of a Triple-Bogie System for Forwarders—Field Trials with TLS Data Support," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    11. Rodolfo Picchio & Rachele Venanzi & Nicolò Di Marzio & Damiano Tocci & Farzam Tavankar, 2020. "A Comparative Analysis of Two Cable Yarder Technologies Performing Thinning Operations on a 33 Year Old Pine Plantation: A Potential Source of Wood for Energy," Energies, MDPI, vol. 13(20), pages 1-20, October.
    12. Hadi Sohrabi & Meghdad Jourgholami & Mohammad Jafari & Naghi Shabanian & Rachele Venanzi & Farzam Tavankar & Rodolfo Picchio, 2020. "Soil Recovery Assessment after Timber Harvesting Based on the Sustainable Forest Operation (SFO) Perspective in Iranian Temperate Forests," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    13. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    14. Meghdad Jourgholami & Azadeh Khoramizadeh & Angela Lo Monaco & Rachele Venanzi & Francesco Latterini & Farzam Tavankar & Rodolfo Picchio, 2021. "Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests," Land, MDPI, vol. 10(6), pages 1-15, June.
    15. Marek Wieruszewski & Aleksandra Górna & Zygmunt Stanula & Krzysztof Adamowicz, 2022. "Energy Use of Woody Biomass in Poland: Its Resources and Harvesting Form," Energies, MDPI, vol. 15(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5716-:d:385283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.