IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5665-d384521.html
   My bibliography  Save this article

Thermal Conditions for Viticulture in Poland

Author

Listed:
  • Czesław Koźmiński

    (Department of Environmental Management, West Pomeranian University of Technology in Szczecin, ul. Papieża Pawła VI, 71-459 Szczecin, Poland)

  • Agnieszka Mąkosza

    (Department of Environmental Management, West Pomeranian University of Technology in Szczecin, ul. Papieża Pawła VI, 71-459 Szczecin, Poland)

  • Bożena Michalska

    (Department of Environmental Management, West Pomeranian University of Technology in Szczecin, ul. Papieża Pawła VI, 71-459 Szczecin, Poland)

  • Jadwiga Nidzgorska-Lencewicz

    (Department of Environmental Management, West Pomeranian University of Technology in Szczecin, ul. Papieża Pawła VI, 71-459 Szczecin, Poland)

Abstract

The ongoing global warming promotes an expansion of the areas of land already used for viticulture, as well as the establishment of new vineyards in areas that were previously considered unsuitable. In this study, a temporal and spatial assessment of the thermal conditions for viticulture in Poland was conducted using a series (1971–2019) of daily data on air temperature (mean, maximum and minimum) obtained from 52 stations of the Polish Institute of Meteorology and Water Management—National Research Institute. On the basis of the values of air temperature for the year (January–December), the vegetative period (April–September), and July, as well as the duration of the period of active growth of the plant (air temperature >10 °C) and the sum of active temperatures (SAT) in this period, five potential areas for viticulture in Poland were identified with respect to thermal conditions. It was found that approx. 60% of the country’s area shows conducive and moderately conducive conditions for intense viticulture. In the analysed multiannual period, there is a dynamic increase in air temperature in Poland, an increase in the sums of active temperatures (SAT) as well as an increase in the duration of the period of active growth of the plant. The ongoing global warming causes a shift of the current boundary of intense viticulture to the north of Poland (from 100 to 150 km). The greatest increases in air temperature and SAT values were found in the south-west and west of Poland, with a marked decrease shown towards the north-east and east.

Suggested Citation

  • Czesław Koźmiński & Agnieszka Mąkosza & Bożena Michalska & Jadwiga Nidzgorska-Lencewicz, 2020. "Thermal Conditions for Viticulture in Poland," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5665-:d:384521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5665/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz P. Łysiak & Iwona Szot, 2023. "The Use of Temperature Based Indices for Estimation of Fruit Production Conditions and Risks in Temperate Climates," Agriculture, MDPI, vol. 13(5), pages 1-24, April.
    2. Czesław Koźmiński & Agnieszka Mąkosza & Jadwiga Nidzgorska-Lencewicz & Bożena Michalska, 2023. "Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C)," Agriculture, MDPI, vol. 13(6), pages 1-17, June.
    3. Pamela Jeziorska-Biel & Katarzyna Leśniewska-Napierała & Konrad Czapiewski, 2021. "(Circular) Path Dependence—The Role of Vineyards in Land Use, Society and Regional Development—The Case of Lubuskie Region (Poland)," Energies, MDPI, vol. 14(24), pages 1-20, December.
    4. Czesław Koźmiński & Jadwiga Nidzgorska-Lencewicz & Agnieszka Mąkosza & Bożena Michalska, 2021. "Ground Frosts in Poland in the Growing Season," Agriculture, MDPI, vol. 11(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5665-:d:384521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.