IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4511-d366339.html
   My bibliography  Save this article

Levee Overtopping Risk Assessment under Climate Change Scenario in Kao-Ping River, Taiwan

Author

Listed:
  • Hsiao-Ping Wei

    (National Science and Technology Center for Disaster Reduction, New Taipei City 23143, Taiwan)

  • Yuan-Fong Su

    (National Science and Technology Center for Disaster Reduction, New Taipei City 23143, Taiwan)

  • Chao-Tzuen Cheng

    (National Science and Technology Center for Disaster Reduction, New Taipei City 23143, Taiwan)

  • Keh-Chia Yeh

    (Department of Civil Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan)

Abstract

With the growing concern about the failure risk of river embankments in a rapidly changing climate, this study aims to quantify the overtopping probability of river embankment in Kao-Ping River basin in southern Taiwan. A water level simulation model is calibrated and validated with historical typhoon events and the calibrated model is further used to assess overtopping risk in the future under a climate change scenario. A dynamic downscaled projection dataset, provided by Meteorological Research Institute (MRI) has been further downscaled to 5-km grids and bias-corrected with a quantile mapping method, is used to simulate the water level of Kao-Ping River in the future. Our results highlighted that the overtopping risk of Kao-Ping River increased by a factor of 5.7~8.0 by the end of the 21st century.

Suggested Citation

  • Hsiao-Ping Wei & Yuan-Fong Su & Chao-Tzuen Cheng & Keh-Chia Yeh, 2020. "Levee Overtopping Risk Assessment under Climate Change Scenario in Kao-Ping River, Taiwan," Sustainability, MDPI, vol. 12(11), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4511-:d:366339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Nadarajah & J. Shiau, 2005. "Analysis of Extreme Flood Events for the Pachang River, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 363-374, August.
    2. Yue Huang & Yonggang Ma & Tie Liu & Min Luo, 2020. "Climate Change Impacts on Extreme Flows Under IPCC RCP Scenarios in the Mountainous Kaidu Watershed, Tarim River Basin," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    3. Shiang-Jen Wu & Jinn-Chuang Yang & Yeou-Koung Tung, 2011. "Risk analysis for flood-control structure under consideration of uncertainties in design flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 117-140, July.
    4. Sang Ug Kim & Minwoo Son & Eun-Sung Chung & Xiao Yu, 2018. "Effects of Non-Stationarity on Flood Frequency Analysis: Case Study of the Cheongmicheon Watershed in South Korea," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    5. Meho Saša Kovačević & Lovorka Librić & Gordana Ivoš & Anita Cerić, 2020. "Application of Reliability Analysis for Risk Ranking in a Levee Reconstruction Project," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Ug Kim & Cheol-Eung Lee, 2021. "Incorporation of Cost-Benefit Analysis Considering Epistemic Uncertainty for Calculating the Optimal Design Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 757-774, January.
    2. Song-Yue Yang & Che-Hao Chang & Chih-Tsung Hsu & Shiang-Jen Wu, 2022. "Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2297-2315, April.
    3. Helena M. Ramos & Mohsen Besharat, 2021. "Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    4. Gabriel Castelblanco & Jose Guevara & Harrison Mesa & Diego Flores, 2020. "Risk Allocation in Unsolicited and Solicited Road Public-Private Partnerships: Sustainability and Management Implications," Sustainability, MDPI, vol. 12(11), pages 1-28, June.
    5. Shiang-Jen Wu & Chih-Tsung Hsu & Ho-Cheng Lien & Che-Hao Chang, 2015. "Modeling the effect of uncertainties in rainfall characteristics on flash flood warning based on rainfall thresholds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1677-1711, January.
    6. Christopher S. Withers & Saralees Nadarajah, 2016. "M-Estimators for Regression with Changing Scale," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 238-286, November.
    7. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    8. Wei Wang & Jia Liu & Chuanzhe Li & Fuliang Yu & Yuebo Xie & Qingtai Qiu & Yufei Jiao & Guojuan Zhang, 2020. "Assessing the applicability of conceptual hydrological models for design flood estimation in small-scale watersheds of northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1135-1153, July.
    9. Ahmet Ozan Celik & Volkan Kiricci & Canberk Insel, 2017. "Reassessment of the flood damage at a river diversion hydropower plant site: lessons learned from a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 833-847, March.
    10. Withers, C.S. & Krouse, D.P. & Pearson, C.P. & Nadarajah, S., 2008. "Modelling time series when mean and variability both change," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 57-63.
    11. Jongsung Kim & Myungjin Lee & Heechan Han & Donghyun Kim & Yunghye Bae & Hung Soo Kim, 2022. "Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    12. Christopher S. Withers & Saralees Nadarajah, 2013. "Expansions for the Distribution of the Maximum from Distributions with a Power Tail when a Trend is Present," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 525-546, September.
    13. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    14. Y. Umer & V. Jetten & J. Ettema & L. Lombardo, 2022. "Application of the WRF model rainfall product for the localized flood hazard modeling in a data-scarce environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1813-1844, March.
    15. Claudia Daza Andrade & José Paulo Soares Azevedo & Marcos Aurélio V. Freitas & Leandro Andrei Beser Deus, 2016. "Precipitation Analysis and the Influence of the El Niño Phenomenon on the Transboundary Basin of the Madeira River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3077-3092, July.
    16. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    17. Elham Jokar & Ali Arman & Arash Azari, 2021. "Forecast and risk analysis of floodplain regarding uncertainty factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1125-1148, June.
    18. Jin Hyuck Kim & Jang Hyun Sung & Eun-Sung Chung & Sang Ug Kim & Minwoo Son & Mohammed Sanusi Shiru, 2021. "Comparison of Projection in Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4.5 and SSP2-4.5," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    19. Ian Brodie, 2013. "Using Volume Delivery Time to Identify Independent Partial Series Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3727-3738, August.
    20. José Sena & Leandro Beser de Deus & Marcos Freitas & Lazaro Costa, 2012. "Extreme Events of Droughts and Floods in Amazonia: 2005 and 2009," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1665-1676, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4511-:d:366339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.