IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6285-d285032.html
   My bibliography  Save this article

Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment

Author

Listed:
  • Laura Turconi

    (Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Strada della Cacce 73, 10135 Torino, Italy)

  • Fabio Luino

    (Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Strada della Cacce 73, 10135 Torino, Italy)

  • Mattia Gussoni

    (Freelance geographer, Via Leonardo da Vinci 45, 20062 Cassano d’Adda (Milano), Italy)

  • Francesco Faccini

    (Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Strada della Cacce 73, 10135 Torino, Italy
    Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy)

  • Marco Giardino

    (Department of Earth Sciences, University of Turin, Via Valperga Caluso 35, 10125 Torino, Italy)

  • Marco Casazza

    (Department of Engineering, Parthenope University of Napoli, Centro Direzionale, Isola C4, 80143 Napoli, Italy)

Abstract

This work investigated the susceptibility factors that trigger shallow landslides. In particular, the objective of the research was the implementation of a method to determine the relevant factors that can trigger shallow landslide events. However, with respect to the existing methods, the integration with historical datasets and the inclusion of spatial factors displaying dynamics in the same characteristic timescales were specific features of the developed tool. The study area included the watersheds of the Sessera and Strona rivers in the alpine area of the Province of Biella (Piedmont, NW Italy). The method was developed and tested from two sub-datasets derived from an integrated dataset that referred to an intense event, involving the same area, that occurred in 1968 (2–3 November). This allowed the implementation of an integrated representation of landslides’ predisposing factors and the identification and classification in different groups of the areas susceptible to geo-hydrological instability processes. The previously existing databases were verified and integrated into a geographic information system (GIS) environment, giving a potentially sharable source of information for planning purposes. The obtained maps represent a metric of one of the possible intrinsic environmental vulnerability factors for the area under study. Consequently, this method can represent a future instrument for determining the intrinsic environmental vulnerability dependent on landslides within an environmental impact assessment (EIA), as required by the most recent European regulation on EIA. Moreover, the shared information can be used to implement informed policy and planning processes, based on a bottom-up approach. In particular, the availability online of landslide susceptibility maps could support the generation of augmented information—useful for both local administrators and planners as well as for stakeholders willing to implement specific projects or infrastructure in vulnerable areas, such as mountains.

Suggested Citation

  • Laura Turconi & Fabio Luino & Mattia Gussoni & Francesco Faccini & Marco Giardino & Marco Casazza, 2019. "Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6285-:d:285032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Franklin Harrison & Chih-Hua Chang, 2019. "Sustainable Management of a Mountain Community Vulnerable to Geohazards: A Case Study of Maolin District, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-18, July.
    2. Anna Roccati & Fabio Luino & Laura Turconi & Pietro Piana & Charles Watkins & Francesco Faccini, 2018. "Historical Geomorphological Research of a Ligurian Coastal Floodplain (Italy) and Its Value for Management of Flood Risk and Environmental Sustainability," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    3. Domenico Tropeano & Laura Turconi, 2004. "Using Historical Documents for Landslide, Debris Flow and Stream Flood Prevention. Applications in Northern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(3), pages 663-679, March.
    4. Saro Lee & Soo-Min Hong & Hyung-Sup Jung, 2017. "A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    5. Xue, Jingyan & Liu, Gengyuan & Casazza, Marco & Ulgiati, Sergio, 2018. "Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning," Energy, Elsevier, vol. 164(C), pages 475-495.
    6. Zhaohua Chen & Jinfei Wang, 2007. "Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 75-89, July.
    7. Marijn Janssen & Maria A. Wimmer, 2015. "Introduction to Policy-Making in the Digital Age," Public Administration and Information Technology, in: Marijn Janssen & Maria A. Wimmer & Ameneh Deljoo (ed.), Policy Practice and Digital Science, edition 127, chapter 1, pages 1-14, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Turconi & Francesco Faccini & Alessandra Marchese & Guido Paliaga & Marco Casazza & Zoran Vojinovic & Fabio Luino, 2020. "Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    2. Michael Makonyo & Zahor Zahor, 2023. "GIS-based analysis of landslides susceptibility mapping: a case study of Lushoto district, north-eastern Tanzania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1085-1115, September.
    3. Gricelda Herrera-Franco & F. Javier Montalván & Andrés Velastegui-Montoya & Jhon Caicedo-Potosí, 2022. "Vulnerability in a Populated Coastal Zone and Its Influence by Oil Wells in Santa Elena, Ecuador," Resources, MDPI, vol. 11(8), pages 1-18, July.
    4. Marko D. Petrović & Ilija Milovanović & Tamara Gajić & Veronika N. Kholina & Miroslav Vujičić & Ivana Blešić & Filip Đoković & Milan M. Radovanović & Nina B. Ćurčić & Al Fauzi Rahmat & Karlygash Muzdy, 2023. "The Degree of Environmental Risk and Attractiveness as a Criterion for Visiting a Tourist Destination," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    5. Anna Roccati & Guido Paliaga & Fabio Luino & Francesco Faccini & Laura Turconi, 2021. "GIS-Based Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment," Land, MDPI, vol. 10(2), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marko D. Petrović & Ilija Milovanović & Tamara Gajić & Veronika N. Kholina & Miroslav Vujičić & Ivana Blešić & Filip Đoković & Milan M. Radovanović & Nina B. Ćurčić & Al Fauzi Rahmat & Karlygash Muzdy, 2023. "The Degree of Environmental Risk and Attractiveness as a Criterion for Visiting a Tourist Destination," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    2. Laura Turconi & Domenico Tropeano & Gabriele Savio & Barbara Bono & Sunil Kumar De & Marco Frasca & Fabio Luino, 2022. "Torrential Hazard Prevention in Alpine Small Basin through Historical, Empirical and Geomorphological Cross Analysis in NW Italy," Land, MDPI, vol. 11(5), pages 1-24, May.
    3. Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
    4. Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
    5. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    6. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    7. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    8. Teen-Hang Meen & Yusuke Matsumoto & Ming-Shyan Wang, 2020. "Selected Papers From 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (IEEE ECBIOS 2019)," Sustainability, MDPI, vol. 12(1), pages 1-5, January.
    9. Elias Garcia-Urquia & Kennet Axelsson, 2014. "The use of press data in the development of a database for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 237-258, September.
    10. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    11. Pietro Piana & Francesco Faccini & Fabio Luino & Guido Paliaga & Alessandro Sacchini & Charles Watkins, 2019. "Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    12. Gláucya Daú & Annibal Scavarda & Luiz Felipe Scavarda & Vivianne Julianelli Taveira Portugal, 2019. "The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    13. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    14. Sunmin Lee & Yunjung Hyun & Moung-Jin Lee, 2019. "Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    15. Alena Kadetova & Yan Radziminovich, 2014. "The catastrophic flood in Transbaikalia (Central Asia) in 1897: case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 423-441, June.
    16. Jan Blahut & Ilaria Poretti & Mattia Amicis & Simone Sterlacchini, 2012. "Database of geo-hydrological disasters for civil protection purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1065-1083, February.
    17. Ana-Maria Apostol & Mari-Isabella Stan, 2021. "Comparative study on the analysis of digital governance in Romania and Bulgaria," Technium Social Sciences Journal, Technium Science, vol. 24(1), pages 38-53, October.
    18. Silvio Cristiano & Samuele Zilio, 2021. "Whose Health in Whose City? A Systems Thinking Approach to Support and Evaluate Plans, Policies, and Strategies for Lasting Urban Health," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    19. Silvio Cristiano & Francesco Gonella, 2020. "‘Kill Venice’: a systems thinking conceptualisation of urban life, economy, and resilience in tourist cities," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    20. Zhiheng Wang & Dongchuan Wang & Qiaozhen Guo & Daikun Wang, 2020. "Regional landslide hazard assessment through integrating susceptibility index and rainfall process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2153-2173, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6285-:d:285032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.