IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6175-d283806.html
   My bibliography  Save this article

Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery

Author

Listed:
  • Jingwen Zhao

    (Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China)

  • Dong Tian

    (Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China)

  • Fei Shen

    (Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China)

  • Jinguang Hu

    (Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary, AB T2N 4H9, Canada
    Department of Wood Science, the University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Yongmei Zeng

    (Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China)

  • Churui Huang

    (Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China)

Abstract

Three typical waste furniture boards (fiberboard, chipboard, and blockboard) were pretreated with phosphoric acid and hydrogen peroxide (PHP). The fractionation process of these feedstocks was attempted in order to harvest the cellulose-rich fraction for enzymatic hydrolysis and bioethanol conversion; further, lignin recovery was also considered in this process. The results indicated that 78.9–91.2% of the cellulose was recovered in the cellulose-rich fraction. The decreased crystallinity, which promoted the water retention capacity and enzyme accessibility, contributed greatly to the excellent hydrolysis performance of the cellulose-rich fraction. Therefore, rather high cellulose–glucose conversions of 83.3–98.0% were achieved by hydrolyzing the pretreated furniture boards, which allowed for harvesting 208–241 g of glucose from 1.0 kg of feedstocks. Correspondingly, 8.1–10.4 g/L of ethanol were obtained after 120 h of simultaneous saccharification and fermentation. The harvested lignin exhibited abundant carboxyl –OH groups (0.61–0.67 mmol g −1 ). In addition, approximately 15–26 g of harvested oligosaccharides were integrated during PHP pretreatment. It was shown that PHP pretreatment is feasible for these highly recalcitrant biomass board materials, which can diversify the bioproducts used in the integrated biorefinery concept.

Suggested Citation

  • Jingwen Zhao & Dong Tian & Fei Shen & Jinguang Hu & Yongmei Zeng & Churui Huang, 2019. "Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6175-:d:283806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.
    2. Huang, Caoxing & Jiang, Xiao & Shen, Xiaojun & Hu, Jinguang & Tang, Wei & Wu, Xinxing & Ragauskas, Arthur & Jameel, Hasan & Meng, Xianzhi & Yong, Qiang, 2022. "Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Eades & Sigrid Kusch-Brandt & Sonia Heaven & Charles J. Banks, 2020. "Estimating the Generation of Garden Waste in England and the Differences between Rural and Urban Areas," Resources, MDPI, vol. 9(1), pages 1-23, January.
    2. Sahar Safarian & Runar Unnthorsson & Christiaan Richter, 2020. "Techno-Economic and Environmental Assessment of Power Supply Chain by Using Waste Biomass Gasification in Iceland," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-13, June.
    3. Sahar Safarian & Sorena Sattari & Runar Unnthorsson & Zeinab Hamidzadeh, 2019. "Prioritization of Bioethanol Production Systems from Agricultural and Waste Agricultural Biomass Using Multi-criteria Decision Making," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-16, March.
    4. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Sahar Safarian & Seyed Mohammad Ebrahimi Saryazdi & Runar Unnthorsson & Christiaan Richter, 2021. "Artificial Neural Network Modeling of Bioethanol Production Via Syngas Fermentation," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-13, March.
    6. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    7. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    8. Safarian, Sahar & Ebrahimi Saryazdi, Seyed Mohammad & Unnthorsson, Runar & Richter, Christiaan, 2020. "Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant," Energy, Elsevier, vol. 213(C).
    9. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland," Energy, Elsevier, vol. 197(C).
    10. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    11. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    12. Kartal, Furkan & Özveren, Uğur, 2020. "A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®," Energy, Elsevier, vol. 209(C).
    13. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6175-:d:283806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.