IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5018-d267043.html
   My bibliography  Save this article

Cadmium Hyperaccumulation and Translocation in Impatiens Glandulifera : From Foe to Friend?

Author

Listed:
  • Stephanie Coakley

    (Department of Science and Health, EnviroCORE, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland)

  • Gary Cahill

    (Department of Science and Health, EnviroCORE, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland)

  • Anne-Marie Enright

    (Department of Science and Health, EnviroCORE, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland)

  • Brian O’Rourke

    (Department of Science and Health, EnviroCORE, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland)

  • Carloalberto Petti

    (Department of Science and Health, EnviroCORE, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland)

Abstract

The use of phytoremediation to sustainably recover areas contaminated by toxic heavy metals such as cadmium (Cd) has been made feasible since the discovery of hyperaccumulator plants. This study examines the potential of the invasive Impatiens glandulifera for phytoremediation propensity of Cd. In these experiments, the plants were exposed to and tested for Cd accumulation; the propensity to accumulate other heavy metals, such as Zinc, was not investigated. The efficacy of phytoaccumulation was assessed over two trials (Cd concentrations of 20 mg/kg to 150 mg/kg) via examination of bioconcentration factor (BCF), translocation factor (TF), and total removal (TR). Exposure to Cd levels of up to 150 mg/kg in the trials did not affect the biomass of the plants compared to the control. Impatiens glandulifera accumulated cadmium at a rate of 276 to 1562 mg/kgin stems, with BCFs, TFs, and TRs of 64.6 to 236.4, 0.2 to 1.2, and 3.6 to 29.2 mg Cd, respectively. In vitro germination revealed unprecedented germination ability, demonstrating the remarkable hypertolerance of I. glandulifera , with no significant difference in the germination of seedlings exposed to 1000 mg/kg Cd compared to the control. This study also examined the localization of Cd in plant tissues via a histochemical assay using dithizone. The results presented herein suggest that I. glandulifera can act as a hyperaccumulator of Cd for phytoremediation.

Suggested Citation

  • Stephanie Coakley & Gary Cahill & Anne-Marie Enright & Brian O’Rourke & Carloalberto Petti, 2019. "Cadmium Hyperaccumulation and Translocation in Impatiens Glandulifera : From Foe to Friend?," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5018-:d:267043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Yujing Yang & Changxiao Li & Xilu Ni & Wenchao Ma & Hong Wei, 2018. "Assessing Soil Metal Levels in an Industrial Environment of Northwestern China and the Phytoremediation Potential of Its Native Plants," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    2. María Del Rosario Delgado-Caballero & María Teresa Alarcón-Herrera & María Cecilia Valles-Aragón & Alicia Melgoza-Castillo & Dámaris Lepoldina Ojeda-Barrios & Arwell Leyva-Chávez, 2017. "Germination of Bouteloua dactyloides and Cynodon dactylon in a Multi-Polluted Soil," Sustainability, MDPI, vol. 9(1), pages 1-9, January.
    3. Byoung-Hwan Seo & Hyuck Soo Kim & Saranya Kuppusamy & Kye-Hoon Kim & Kwon-Rae Kim, 2017. "Enhanced Nitrogen and Phosphorus Removal by Woody Plants with Deep-Planting Technique for the Potential Environmental Management of Carcass Burial Sites," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    4. Ruchita Dixit & Wasiullah & Deepti Malaviya & Kuppusamy Pandiyan & Udai B. Singh & Asha Sahu & Renu Shukla & Bhanu P. Singh & Jai P. Rai & Pawan Kumar Sharma & Harshad Lade & Diby Paul, 2015. "Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes," Sustainability, MDPI, vol. 7(2), pages 1-24, February.
    5. Ahmed Mahmoud Abbas & Sameh K. Abd-Elmabod & Soad M. El-Ashry & Wagdi Saber Soliman & Noha El-Tayeh & Jesus M. Castillo, 2019. "Capability of the Invasive Tree Prosopis glandulosa Torr. to Remediate Soil Treated with Sewage Sludge," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez, Giovanny & Vilà , Montserrat & Gallardo, Belinda, 2022. "Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios," Ecosystem Services, Elsevier, vol. 56(C).
    2. Sheza Ayaz Khilji & Muhammad Aqeel & Muhammad Faisal Maqsood & Noreen Khalid & Aasma Tufail & Zahoor Ahmad Sajid & Ameena A. Al-Surhanee & Mohamed Hashem & Saad Alamri & Khalid Awadh Al-Mutairi & Ali , 2021. "Hemarthria compressa—Aspergillus niger—Trichoderma pseudokoningii Mediated Trilateral Perspective for Bioremediation and Detoxification of Industrial Paper Sludge," Sustainability, MDPI, vol. 13(21), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Omer Faruk Sulhan & Hakan Sevik & Kaan Isinkaralar, 2023. "Assessment of Cr and Zn deposition on Picea pungens Engelm. in urban air of Ankara, Türkiye," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4365-4384, May.
    3. Hafeez Muhammad Yakasai & Mohd Fadhil Rahman & Motharasan Manogaran & Nur Adeela Yasid & Mohd Arif Syed & Nor Aripin Shamaan & Mohd Yunus Shukor, 2021. "Microbiological Reduction of Molybdenum to Molybdenum Blue as a Sustainable Remediation Tool for Molybdenum: A Comprehensive Review," IJERPH, MDPI, vol. 18(11), pages 1-25, May.
    4. Lei Han & Rui Chen & Zhao Liu & Shanshan Chang & Yonghua Zhao & Leshi Li & Risheng Li & Longfei Xia, 2021. "Sources of and Control Measures for PTE Pollution in Soil at the Urban Fringe in Weinan, China," Land, MDPI, vol. 10(7), pages 1-19, July.
    5. Ayansina Segun Ayangbenro & Olubukola Oluranti Babalola, 2017. "A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents," IJERPH, MDPI, vol. 14(1), pages 1-16, January.
    6. Sajid Mehmood & Xiukang Wang & Waqas Ahmed & Muhammad Imtiaz & Allah Ditta & Muhammad Rizwan & Sana Irshad & Saqib Bashir & Qudsia Saeed & Adnan Mustafa & Weidong Li, 2021. "Removal Mechanisms of Slag against Potentially Toxic Elements in Soil and Plants for Sustainable Agriculture Development: A Critical Review," Sustainability, MDPI, vol. 13(9), pages 1-13, May.
    7. Mahnoor Akbar & Ahmed M. El-Sabrout & Shadi Shokralla & Eman A. Mahmoud & Hosam O. Elansary & Fizza Akbar & Burhan ud Din & Urooj Haroon & Musrat Ali & Hira Saleem & Maryam Anar & Asif Kamal & Kinza T, 2022. "Preservation and Recovery of Metal-Tolerant Fungi from Industrial Soil and Their Application to Improve Germination and Growth of Wheat," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    8. Ahmed M. Abbas & Stephen J. Novak & Mahmoud Fictor & Yasser S. Mostafa & Saad A. Alamri & Sulaiman A. Alrumman & Mostafa A. Taher & Mohamed Hashem & Rafat Khalaphallah, 2022. "Initial In Vitro Assessment of the Antifungal Activity of Aqueous Extracts from Three Invasive Plant Species," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    9. Zhouli Liu & Mengdi Chen & Maosen Lin & Qinglin Chen & Qingxuan Lu & Jing Yao & Xingyuan He, 2022. "Cadmium Uptake and Growth Responses of Seven Urban Flowering Plants: Hyperaccumulator or Bioindicator?," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
    10. Prudence Bararunyeretse & Yan Zhang & Hongbing Ji, 2019. "Molecular Biology-Based Analysis of the Interactive Effect of Nickel and Xanthates on Soil Bacterial Community Diversity and Structure," Sustainability, MDPI, vol. 11(14), pages 1-32, July.
    11. Fuyao Chen & Yongjun Yang & Jiaxin Mi & Run Liu & Huping Hou & Shaoliang Zhang, 2019. "Effects of Vegetation Pattern and Spontaneous Succession on Remediation of Potential Toxic Metal-Polluted Soil in Mine Dumps," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    12. Krzysztof Poszytek & Joanna Karczewska-Golec & Anna Ciok & Przemyslaw Decewicz & Mikolaj Dziurzynski & Adrian Gorecki & Grazyna Jakusz & Tomasz Krucon & Pola Lomza & Krzysztof Romaniuk & Michal Styczy, 2018. "Genome-Guided Characterization of Ochrobactrum sp. POC9 Enhancing Sewage Sludge Utilization—Biotechnological Potential and Biosafety Considerations," IJERPH, MDPI, vol. 15(7), pages 1-17, July.
    13. Petru Cârdei & Cătălina Tudora & Valentin Vlăduț & Mirabela Augustina Pruteanu & Iuliana Găgeanu & Dan Cujbescu & Despina-Maria Bordean & Nicoleta Ungureanu & George Ipate & Oana Diana Cristea, 2021. "Mathematical Model to Simulate the Transfer of Heavy Metals from Soil to Plant," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    14. Oluwaseun Adeyinka Fasusi & Olubukola Oluranti Babalola, 2021. "The multifaceted plant-beneficial rhizobacteria toward agricultural sustainability," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 57(2), pages 95-111.
    15. Songlin Zhang & Yuan Liu & Yujing Yang & Xilu Ni & Muhammad Arif & Wokadala Charles & Changxiao Li, 2020. "Trace Elements in Soils of a Typical Industrial District in Ningxia, Northwest China: Pollution, Source, and Risk Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    16. Xiaofei Chen & Jianhua Tong & Yi Su & Langtao Xiao, 2020. "Pennisetum sinese : A Potential Phytoremediation Plant for Chromium Deletion from Soil," Sustainability, MDPI, vol. 12(9), pages 1-11, May.
    17. Xingqing Zhao & Min Wang & Hui Wang & Ding Tang & Jian Huang & Yu Sun, 2019. "Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria," IJERPH, MDPI, vol. 16(2), pages 1-14, January.
    18. Guijie Tong & Shaohua Wu & Yujie Yuan & Fufu Li & Lian Chen & Daohao Yan, 2018. "Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
    19. Ludovico Pontoni & Eric D. Van Hullebusch & Yoan Pechaud & Massimiliano Fabbricino & Giovanni Esposito & Francesco Pirozzi, 2016. "Colloidal Mobilization and Fate of Trace Heavy Metals in Semi-Saturated Artificial Soil (OECD) Irrigated with Treated Wastewater," Sustainability, MDPI, vol. 8(12), pages 1-13, December.
    20. Shifa Shaffique & Sang-Mo Kang & Md. Injamum Ul Hoque & Muhamad Imran & Muhamad Aaqil khan & In-Jung Lee, 2023. "Research Progress in Soybean by Phytohormone Modulation and Metal Chelation over the Past Decade," Agriculture, MDPI, vol. 13(7), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5018-:d:267043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.