IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3081-d235971.html
   My bibliography  Save this article

The Effects of the Layouts of Vegetation and Wind Flow in an Apartment Housing Complex to Mitigate Outdoor Microclimate Air Temperature

Author

Listed:
  • Mengyu Zhang

    (Department of Urban Design and Studies, Chung-ang University, Seoul 06974, Korea)

  • Woongkyoo Bae

    (Department of Urban Design and Studies, Chung-ang University, Seoul 06974, Korea)

  • Jeeyeop Kim

    (Department of Architecture, Ajou University, Suwon 16499, Korea)

Abstract

Previous studies have demonstrated that vegetation and increased air flow can mitigate air temperature by employing numerical models, satellite remote sensing or Computational Fluid Dynamics simulations. This study aimed to examine how layouts of vegetation space and wind flow affect microclimate air temperature, which directly affects city dwellers’ thermal comfort in summer, in a real apartment housing complex in Seoul, South Korea. To do this, a Reynolds-averaged Navier–Stokes model was utilized, combined with a finite volume method CFD simulation, and which measured transpirational cooling effects of vegetation by comprehensively considering air humidity by transpiration, as well as wind flow of the surroundings, to reflect actual conditions of urban environments. Based on the computational model, nine scenarios including elevated building designs were simulated. The findings of this study are as follows: First, different layouts of vegetation and wind flow clearly affected microclimate air temperature in the housing complex. Second, when the total area of vegetation was the same, it was more effective to reduce air temperature by placing it in small units rather than concentrating it in one place, and placing small vegetation spaces close to buildings was better than locating them between buildings. Third, it was apparent that an elevated space works as a wind path, leading to increasing wind velocity. However, it was revealed that wind flow does not always positively affect hot temperatures.

Suggested Citation

  • Mengyu Zhang & Woongkyoo Bae & Jeeyeop Kim, 2019. "The Effects of the Layouts of Vegetation and Wind Flow in an Apartment Housing Complex to Mitigate Outdoor Microclimate Air Temperature," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3081-:d:235971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sukjin Jung & Seonghwan Yoon, 2017. "Deduction of Optimum Surface Design Factors for Enhancement of Outdoor Thermal Environment in a Micro-Scale Unit," Sustainability, MDPI, vol. 9(8), pages 1-26, August.
    2. Yeri Choi & Sugie Lee & Hyunbin Moon, 2018. "Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    3. Luis Ma. Bo-ot & Yao-Hong Wang & Che-Ming Chiang & Chi-Ming Lai, 2012. "Effects of a Green Space Layout on the Outdoor Thermal Environment at the Neighborhood Level," Energies, MDPI, vol. 5(10), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Norihiro Watanabe & Tsuyoshi Setoguchi & Kosuke Maeda & Daiki Iwakuni & Zhiming Guo & Takuya Tsutsumi, 2017. "Sustainable Block Design Process for High-Rise and High-Density Districts with Snow and Wind Simulations for Winter Cities," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    3. Hemant Bherwani & Saima Anjum & Ankit Gupta & Anju Singh & Rakesh Kumar, 2021. "Establishing influence of morphological aspects on microclimatic conditions through GIS-assisted mathematical modeling and field observations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15857-15880, November.
    4. Fitsum Tariku & Afshin Gharib Mombeni, 2023. "ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration," Energies, MDPI, vol. 16(14), pages 1-23, July.
    5. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    6. Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    7. Yucekaya, Murat & Uslu, Cengiz, 2020. "An analytical model proposal to design urban open spaces in balance with climate: A case study of Gaziantep," Land Use Policy, Elsevier, vol. 95(C).
    8. Fan Fei & Yan Wang & Xiaoyun Jia, 2022. "Assessment of the Mechanisms of Summer Thermal Environment of Waterfront Space in China’s Cold Regions," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    9. Liyixuan Fan & Jingmao Wang & Du Han & Jie Gao & Yingyu Yao, 2022. "Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    10. Ren Zhou & Weimin Guo, 2023. "Research on Regional Architectural Design Method Based on GIS," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    11. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3081-:d:235971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.